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Abstract
Risk assessment is a growing use for machine learning mod-
els. When used in high-stakes applications, especially ones
regulated by anti-discrimination laws or governed by soci-
etal norms for fairness, it is important to ensure that learned
models do not propagate and scale any biases that may ex-
ist in training data. In this paper, we add on an additional
challenge beyond fairness: unsupervised domain adaptation
to covariate shift between a source and target distribution.
Motivated by the real-world problem of risk assessment in
new markets for health insurance in the United States and
mobile money-based loans in East Africa, we provide a pre-
cise formulation of the machine learning with covariate shift
and score parity problem. Our formulation focuses on situa-
tions in which protected attributes are not available in either
the source or target domain. We propose two new weight-
ing methods: prevalence-constrained covariate shift (PCCS)
which does not require protected attributes in the target do-
main and target-fair covariate shift (TFCS) which does not
require protected attributes in the source domain. We empiri-
cally demonstrate their efficacy in two applications.

1 Introduction
The covariate shift setting in machine learning is often en-
countered in real-world applications that have limitations on
data collection and require training on a different probability
distribution than the one a model will ultimately be tested
on (Sugiyama, Krauledat, and Müller 2007; Bickel, Brck-
ner, and Scheffer 2009; Quiñonero-Candela et al. 2009). In
this setting, the training (source) and test (target) marginal
feature distributions are different but the conditional distri-
bution of labels given features is the same in the training
and test distributions. Unsupervised domain adaptation to
account for covariate shift can be achieved by forms of trans-
fer learning (Gong et al. 2012; Wang and Schneider 2014).
Relevant applications include risk assessment of people for
credit and insurance when the provider has historical fea-
tures and risk labels about its members, but is expanding into
new markets with different demographics for which it does
not have risk labels (Wei, Ramamurthy, and Varshney 2015;
Speakman, Sridharan, and Markus 2018). The provider must
learn models from its existing market data (source distribu-
tion) to score people in the new market (target distribution).
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In this paper, we propose the problem of fair transfer
learning under covariate shift and methods of solution. We
examine the variations of the problem in which the pro-
tected attributes are available only for the source or only
available for the target. The issue of missing protected at-
tributes is not only encountered in covariate shift settings,
but is a more general challenge (Maurya 2018, J. Langford
in panel discussion) because legal restrictions often prevent
the collection of protected attributes or their joining to the
rest of the dataset. For example, under Title VII of the 1964
Civil Rights Act, employers cannot ask potential applicants
about gender (Blankenship 1993). Gupta et al. (2018) ad-
dress the problem of unavailable protected attributes by con-
structing proxy groups using variables in the dataset that are
not protected but are likely correlated to protected attributes
based on prior subject matter knowledge. Our approach is
neither to explicitly construct proxy groups nor to use other
variables, but to use the protected attributes themselves in
related datasets. This approach enables companies to audit
their hiring practices for gender discrimination by using ag-
gregated datasets like the American Community Survey that
have gender as a feature. Financial institutions could also
use this to evaluate whether their credit approval processes
comply with regulations prohibiting discrimination in cases
where they are legally or practically unable to collect the
protected attribute (Chen et al. 2018).

We apply our method to the medical expenditure dataset
produced by the US Department of Health and Human
Services known as the Medical Expenditure Panel Survey
(MEPS). Health insurance providers in the US can choose
the markets in which they will offer their plans and in which
ones they will not. This decision making is driven by a risk
assessment of the market, and thus the task is predicting in-
dividuals with low total healthcare expenditure vs. high ex-
penditure over the course of a year. Section 1557 of the Pa-
tient Protection and Affordable Care Act (PPACA) in the
United States made discrimination in healthcare on the ba-
sis of sex and race illegal (Gaulding 1995; Watson 2012;
Kahn 2015). As the PPACA was enacted, many insurance
companies expanded rapidly into new markets, encountering
the need to perform risk assessment having expenditure data
only from the markets they served, not from new markets.
Wei et al. (2015) presented a covariate shift-based solution
to this problem without considering fairness.



We also evaluate our methods on mobile money loan
approvals in East Africa. Based on the success of mobile
phone-based savings products such as M-Pesa, providers
have recently begun offering credit services (Cook and
McKay 2015). Algorithms make loan approval decisions
based on mobile usage data. There has been rapid expansion
by financial service providers into new markets (in this case,
different countries with different partnering mobile network
operators) with a need for covariate shift-based machine
learning; one such solution is presented in (Speakman, Srid-
haran, and Markus 2018). Experiments on a dataset modeled
after the actual data of a commercial financial institution in
Africa show our method achieves fair covariate shift.

2 Problem Setting
2.1 Covariate Shift
We are given labeled data {(x1, y1), . . . , (xn, yn)} from a
source domain where yi ∈ {0, 1}. We assume one of the
labels is a more favorable outcome than the other. We also
have unlabeled data {xn+1, . . . , xn+m} from a target do-
main to which we wish to assign labels. We use S =
{1, . . . , n} and T = {n+ 1, . . . , n +m} to distinguish the
index sets from the source and target domains. With covari-
ate shift, the features xi ∈ Rd, i ∈ S, are assumed to be
drawn from a source distribution with density pX(x) while
xi for i ∈ T are drawn from a different target distribution
with density qX(x). It is assumed that the conditional distri-
bution of Y , i.e. pY |X(y | x), is the same in both domains.

The standard approach to supervised learning is to find a
predictor ŷ(x) in a classH that minimizes empirical risk,

min
ŷ∈H

1

n

∑
i∈S
L(ŷ(xi), yi), (1)

where L is the loss function between ŷ and y that defines the
risk. As n→∞, the empirical risk converges to the popula-
tion risk, which can be written as the iterated expectation

EpX [E[L(ŷ(X), Y ) |X]] (2)

to emphasize that the outer expectation is with respect to
the source distribution pX . In this ideal limit where H also
contains arbitrarily complex functions, the optimal predic-
tor in both domains, pY |X(· | x), can be recovered wher-
ever pX(x) is positive. However for finite samples and con-
strained H, the predictor obtained by minimizing empirical
risk (1) generally shows traces of pX and may not be best
suited to the distribution qX under which testing occurs.

Many methods that address the covariate shift problem
do so by weighting training/source instances with weights
wi ≥ 0 so that (1) becomes

min
ŷ∈H

1

n

∑
i∈S

wiL(ŷ(xi), yi).

If wi = qX(xi)/pX(xi), then the weighted empirical risk
converges to (2) with pX replaced by qX , as is desired for
the target domain. Multivariate density estimation is diffi-
cult and therefore it is common to estimate the ratio of den-
sities directly. One approach treats this as a classification

problem (Bickel, Brckner, and Scheffer 2009) where the la-
bel is the source or target distribution. Logistic regression
does this naturally and has been shown to be optimal (min-
imum asymptotic variance) for correctly specified models
(Qin 1998) but performs poorly for mis-specified models
(Sugiyama, Suzuki, and Kanamori 2012). We use logistic
regression in Section 4 for illustration purposes, noting that
more sophisticated methods exist, e.g. (Gretton et al. 2009;
Sugiyama et al. 2007).

2.2 Protected Attribute Availability
We consider the problem of fairness with respect to pro-
tected groups. The definition of protected groups is as-
sumed given and depends on the application context. Let
gi ∈ {0, 1, . . . , G − 1} represent the group identity of in-
stance i, which may be determined by one or more pro-
tected attributes such as race and gender. We pay particular
attention to situations in which protected attribute data are
available only in the source or target domain. In the former
case, the source data consists of triplets {(gi, xi, yi), i ∈ S}
while the target data is {xi, i ∈ T } as before. In the lat-
ter, the source data is {(xi, yi), i ∈ S} while the target
data becomes {(gi, xi), i ∈ T }. Based on the values of
{gi}, we define the partition of the source data into sets
Sk = {i ∈ S : gi = k}, i.e. source examples belong-
ing to group k, for all k = 0, . . . , G − 1. The partition
{Tk, k = 0, . . . , G− 1} of the target is defined similarly.

2.3 Fairness Metrics
We focus on notions of demographic or statistical parity that
deal with the dependence of the classifier output on the pro-
tected attributes. We define a score s(x) as a function that
assigns to a feature vector x a number in [0, 1] correspond-
ing to the likelihood of a positive outcome Y = 1 given x.
s(x; θ) denotes a score function parametrized by a vector of
parameters θ. Viewing X as a random variable, a distribu-
tion is induced for the score s(X) as well. We will say that
a score satisfies score parity in the strong sense if s(X) is
statistically independent of the protected group variable G.
This notion may be relaxed by requiring some distributional
distance D

(
ps(X) |G(· | k), ps(X) |G(· | l)

)
between scores

conditioned on groups k 6= l to be bounded by some con-
stant δ > 0.

Herein we focus on two weaker and more common def-
initions of score parity. The first is mean or average score
parity,

E[s(X)|G = k] = E[s(X)|G = l] ∀k, l ∈ {0, . . . , G−1}
(3)

which is the definition of “statistical parity” in e.g. (Corbett-
Davies et al. 2017). Mean score parity may also be relaxed
by allowing small deviations, and it is this relaxed defini-
tion that is targeted by the methods proposed in Section 3.
The second notion is thresholded score parity at threshold t:
∀k, l ∈ {0, . . . , G− 1},

Pr(s(X) > t |G = k) = Pr(s(X) > t |G = l) (4)

which is also called “statistical parity” in e.g. (Chouldechova
2017). Thresholded score parity applies when the score is



thresholded to yield a binary prediction. It is used in Sec-
tion 4 as a second fairness metric to evaluate different meth-
ods. If a score satisfies thresholded parity for all thresholds
t ∈ [0, 1], then it also satisfies parity in the strong sense
above. It is clear that strong score parity implies both mean
and thresholded parity. Moreover, if approximate strong par-
ity holds in that D

(
ps(X) |G(· | k), ps(X) |G(· | l)

)
is small,

then one expects the mean score disparity and thresholded
score disparity to be small as well although the details de-
pend on the distance measure D.

A quantity not involving but related to scores is preva-
lence, which describes the proportions of class labels. For
binary Y , it is sufficient to assess prevalence Pr(Y = 1)
of the positive outcome in the entire dataset and prevalence
Pr(Y = 1|G = k) for particular groups. Prevalence dif-
ferences between groups are therefore a measure of bias in
the dataset. Since scores are often designed to estimate ei-
ther pY |X or Y itself after thresholding, controlling group-
specific prevalences is a way of encouraging mean score par-
ity in the former case or thresholded score parity in the latter,
provided that the score is an approximately unbiased estima-
tor, E[s(X)] ≈ E[Y ] or Pr(s(X) > t) ≈ Pr(Y = 1). The
method discussed in Section 3.1 relies on this relationship
between prevalences and scores.

3 Proposed Methods
Given the popularity of weighting methods for the covari-
ate shift problem and in works on fairness (Kamiran and
Calders 2012; Krasanakis et al. 2018; Agarwal et al. 2018),
we focus in this paper on weighting as a means to address
covariate shift and fairness jointly. Our goal is to determine
weights wi ≥ 0 for the source/training instances (xi, yi),
i ∈ S . We propose two methods for the cases in which pro-
tected attribute information is available only for the source
or target populations respectively. The method of Section 3.1
assumes nothing more than the use of a classification al-
gorithm that accepts weights as input. The method of Sec-
tion 3.2 requires differentiability of the classification loss
function. It is possible to relax this assumption, for exam-
ple by using smooth approximations to the loss and second-
order optimization techniques as in (Koh and Liang 2017).
The derivatives can be evaluated in closed form, as we do for
logistic regression, or using automatic differentiation (Bay-
din et al. 2018).

3.1 Prevalence-Constrained Covariate Shift
(PCCS)

For the scenario in which the protected attribute is avail-
able for the source population but not the target popula-
tion, we propose a method that combines conventional co-
variate shift with weighting to bring group-specific preva-
lences closer together. As discussed in Section 2.3, dif-
ferences in prevalences characterize dataset bias, and con-
trolling this bias encourages score parity. Let wCS(x) be
a covariate shift weight, i.e. an approximation to the ra-
tio qX(xi)/pX(xi), obtained through logistic regression or
other methods (Bickel, Brckner, and Scheffer 2009; Gretton
et al. 2009; Sugiyama et al. 2007; Sugiyama, Suzuki, and

Kanamori 2012). The goal is to learn weights wi for each
training example that are as close as possible to the covariate
shift weights subject to constraints on weighted prevalences.
The objective function is thus

min
w

∑
i∈S
|wi − wCS(xi)|. (5)

Norms other than the `1 norm can also be used. The preva-
lence constraints for fairness enforce closeness between all
pairs of groups:∑
i∈Sk:yi=1

wi∑
i∈Sk

wi
≥

∑
i∈Sl:yi=1

wi∑
i∈Sl

wi
−δ ∀k, l ∈ {0, . . . , G−1},

(6)
where the parameter δ trades off between differences in
prevalences and deviation of w from wCS . To make these
constraints convex, we add equality constraints on the pro-
portion of weight allocated to each group:∑

i∈Sk

wi = ck
∑
i∈S

wi, k ∈ {0, . . . , G− 1} (7)

where

ck =

∑
i∈Sk

wCS(xi)∑
i∈S

wCS(xi)
, (8)

i.e. we require the allocations to groups specified by the co-
variate shift weights to remain unchanged. Lastly we require
weights to be non-negative:

wi ≥ 0, i ∈ S. (9)

The optimization problem is to minimize the objective in
(5) subject to constraints (6)–(9).

3.2 Target-Fair Covariate Shift (TFCS)
We now consider the scenario in which the protected at-
tribute is available for the target but not the source. We may
directly evaluate the score disparity of the classifier on the
target and adjust the classifier to reduce the disparity. We as-
sume that the classifier parameters are chosen to minimize
the weighted empirical risk,

θ̂ = arg min
θ

1

n

∑
i∈S

wiL(s(xi; θ), yi), (10)

where L(s(x; θ), y) is a twice differentiable function of θ as
discussed and any regularizer is absorbed into L. Thus the
classifier can be adjusted by changing the weights wi.

To measure score disparity, we introduce the following
fairness loss that sums the squares of average score dispari-
ties over all pairs of groups (Tk, Tl):

Lf
(
s(·; θ̂)

)
=
∑
k<l

(
1

|Tk|
∑
i∈Tk

s(xi; θ̂)−
1

|Tl|
∑
i∈Tl

s(xi; θ̂)

)2

.

(11)



Algorithm 1 Target-Fair Covariate Shift (TFCS)
Input:

Data: labeled source {(xi, yi), i ∈ S}, target with pro-
tected attribute {(xi, gi), i ∈ T }
Parameters: trade-off λ, step size η
Estimate covariate shift weights wCS from {xi, i ∈ S ∪
T }
w ← wCS or wi ← 1 ∀i (uniform)
repeat

Learn classifier parameters θ̂ given w (10)
Evaluate combined loss (12)
# Gradient computations:
Compute ∇θ̂Lc (e.g. (19))
Compute ∇θ̂Lf (e.g. (20))
Compute ∂θ̂/∂wi ∀i (15)(16)
Compute∇wLt (14)
# Gradient update
w ← w − η∇wLt

until stopping criterion is met
Output: Classifier parameters θ̂, weights w

The weights wi are chosen to minimize a linear combination
of this fairness loss with a classification loss:

min
w

1

n

∑
i∈S

wCS(xi)L(s(xi; θ̂), yi) + λLf
(
s(·; θ̂)

)
, (12)

where wCS(xi) are covariate shift weights as in Section 3.1
and are fixed (not to be confused with w). The first term in
(12) thus approximates classification loss on the target pop-
ulation by weighting the source population, where labels are
available. The fairness loss Lf is evaluated on the target,
where the protected attribute is available. Both terms are ex-
plicit functions of the scores parametrized by θ̂; the notation
s(·; θ̂) emphasizes this dependence. The parameters θ̂ are a
function of the optimization variables wi through (10).

We propose to optimize (12) through gradient descent.
The algorithm (see Algorithm 1) alternates between gradi-
ent updates to w to decrease the objective in (12) and solv-
ing (10) to obtain a new classifier from the updatedw, which
is then re-evaluated using (12). In our experiments, we use
a constant step size η and terminate after a fixed number of
iterations.

The combined loss (12) is generally not a convex function
of the weights wi. Hence different initializations may lead
to different solutions. One choice is to initialize with covari-
ate shift weights, w = wCS . In the case of λ = 0 in (12)
(i.e. only classification loss), w = wCS is a stationary point
as will be shown at the end of Appendix A. Accordingly for
small λ, w = wCS is expected to be near-stationary. A sim-
pler alternative is to initialize with uniform weights wi = 1.

For the scenario in which the protected attribute is avail-
able in both the source and target domains, we propose to
combine the methods in Section 3.1 and this section. First,
PCCS is used to achieve covariate shift and approximate
score parity based on the protected attribute in the source.
Then the PCCS weights are used to initialize the minimiza-
tion in (12) to refine score parity in the target domain.

Since the combined loss (12) is an indirect function of
w via (10), the calculation of its gradient with respect to w
is non-standard. Appendix A derives the necessary expres-
sions.

4 Experiments
We demonstrate the utility of PCCS and TFCS in fair trans-
fer learning for two applications. The first is a healthcare
cost prediction scenario when a health insurance company
that is servicing an existing market wants to venture into a
new market, while ensuring equal benefit to all race- and
gender-based intersectional groups in the new market. The
second is a loan approval setting where a mobile money
provider from one country in East Africa is expanding to
another country while being non-discriminatory according
to age and gender.

We use AUC to assess accuracy and we compute four fair-
ness metrics:

1. Mean score parity (MSP) loss: Square root of sum of
squares of differences between mean scores for all pairs
of groups (see equations (3) and (11)).

2. Thresholded score parity (TSP) loss: Square root of sum
of squares of differences between thresholded scores for
all pairs of groups (see equation (4)).

3. Max ∆ MSP: Maximum of absolute differences between
mean scores for all pairs of groups.

4. Max ∆ TSP: Maximum of absolute differences between
thresholded scores for all pairs of groups.

We compare our proposed methods against four baselines:

1. Native: Train and test on the target population (i.e. not in
the transfer learning setting).

2. Unadapted transfer learning: Train on the source popula-
tion and test on target population without any adaptation
to the target population during training.

3. Covariate shift: Train on the source population reweighed
to resemble the target population.

4. Kamiran Calders: Correct the source dataset for fairness
using the approach proposed in (Kamiran and Calders
2012) without performing any covariate shift.

Testing is always performed on the target population where
true labels and protected attributes are used to evaluate accu-
racy and fairness. PCCS and Kamiran-Calders use protected
attributes only from the source while TFCS uses them only
from the target.

In all cases, logistic regression is used as the classification
algorithm and also to obtain covariate shift weights. This
choice is intended as a simple illustration of the methods
and richer models can certainly be substituted. The TFCS
method was initialized using uniform weights and its stop-
ping criterion is a maximum number of iterations, usually
set to a few hundred, depending on the dataset used.

We studied the behavior of PCCS and TFCS for various
values of their respective free parameters δ and λ. For future
applications, the choice of the free parameter will depend
on the particular setting (including the initial discrepancies



Table 1: MEPS outcome disparities between various groups
in source (low-income) and target (high-income) popula-
tions. The disparity is given by Pr(Y = 1|G = k)−Pr(Y =
1|G = l) with probabilities expressed as percentages.

Groups k and l Source Target
white males, black males 14.6 17.4

white males, white females -12.8 -18.0
white males, black females 3.0 -3.4
black males, white females -27.4 -35.4
black males, black females -11.6 -20.9

white females, black females 15.8 14.5

in group prevalences) but generally we would recommend
using a δ in [0, .075] for PCCS. For TFCS, we recommend
using cross-validation to choose λ.

We note that transfer learning can exacerbate discrimina-
tion or improve fairness; the direction depends on the ap-
plication, and indeed, in our experiments we observe both.
Regardless of whether transfer learning alone helps or hurts
fairness, our fairness-aware transfer learning methods are
able to improve the fairness metrics.

4.1 Medical Expenditure Panel Survey (MEPS)
The MEPS dataset (for Healthcare Research and Quality
2018) is obtained using a nationally representative survey of
the US population. It contains annual healthcare cost, demo-
graphics, and self-reported medical information. We use the
data from panel 19 of the 2015 survey. There is no concept
of market in this dataset since it does not come from an in-
surance provider (those datasets are proprietary, but MEPS
shares relevant characteristics with such datasets). We de-
fine the source market to consist of people earning less than
national median income (USD 21,000), and target market to
consist of the rest of the population.

We consider two protected attributes: gender and race.
Both are legally protected, as discussed in Section 1. In our
experiments, the races considered are non-Hispanic whites
and non-Hispanic blacks. The outcome variable is the bina-
rized annual healthcare expenditure (low cost and high cost),
obtained by thresholding the expenditure at its national me-
dian (USD 1,272). Representative features considered for
the classification problem include age, marital status, edu-
cation, military status, self-reported health conditions, self-
reported physical and cognitive limitations, employment sta-
tus, poverty category, and insurance coverage status. The
threshold t used for obtaining the TSP metric is 0.5 since
the prevalence of outcomes in this data is equally balanced
at 0.5. The disparity in prevalence of high cost outcomes
among various gender–race intersections is provided in Ta-
ble 1. The largest disparity is between black males and white
females, whereas the smallest is between white males and
black females.

We compare PCCS and TFCS with the baseline ap-
proaches in Table 2. The AUC on the target population for all
methods are similar except for TFCS with λ = 100, as will
be explained later. The methods do show differences how-
ever in score disparity in the target. Covariate shift without

Table 2: Results on MEPS dataset. Source: low-income pop-
ulation, Target: high-income population. Disparity measures
are shown as percentages. All metrics are reported for target.

AUC MSP TSP Max Max
loss loss ∆ MSP ∆ TSP

Native 0.800 29.0 42.4 19.4 27.7
Unadapted 0.799 27.0 43.3 18.9 30.2

Covariate Shift 0.786 17.6 30.0 12.3 21.1
Kamiran Calders 0.799 16.5 26.2 11.5 18.5
PCCS (δ = 0.05) 0.788 14.2 20.3 9.7 14.3
TFCS (λ = 100) 0.708 2.2 5.1 1.4 3.4

Figure 1: Variation of score parities and AUC with the PCCS
trade-off parameter δ for the MEPS dataset.

any fairness adjustments happens to significantly reduce the
fairness losses, and Kamiran-Calders yields a similar reduc-
tion. They are further reduced with PCCS, which combines
elements of covariate shift and parity-inducing reweighting.
TFCS with λ = 100 achieves by far the lowest score parity
losses, at the cost of a lower AUC. The large setting for λ is
intended to show the parity levels that can be achieved.

Figure 1 shows the variation of fairness and accuracy met-
rics with respect to δ for PCCS. While the MSP and TSP
curves are somewhat variable, there is a slight downward
trend in disparities as δ decreases toward zero and tightens
the prevalence constraints (6). The AUC is nearly constant.
The behavior of TFCS with changing λ is illustrated in Fig-
ure 2. Recall that λ weights the fairness component of the
combined loss (12). When λ is small, all metrics are closer
to the values obtained with methods that do not account for
fairness (unadapted, covariate shift), as expected. As λ in-
creases past 1, the score parity losses decrease dramatically
while the AUC undergoes a more modest reduction.

Although we do not observe a boost in AUC from co-
variate shift methods, our fairness methods that adjust for
covariate shift improve the fairness metrics over Kamiran-
Calders, which does not account for covariate shift.



Figure 2: Variation of score parities and AUC with the TFCS
trade-off parameter λ for the MEPS dataset.

4.2 Mobile Money Loan Approval in East Africa
We consider the expansion of mobile-money credit services
into a new market of East Africa. We use data from the orig-
inal market to train a model that is deployed in the new mar-
ket. Age (thresholded at 35 years) and gender are protected
attributes. The prediction task is to identify who will repay
a loan; the features are described in (Speakman, Sridharan,
and Markus 2018) and include airtime usage and mobile
money volumes sent and received over a 6-month period.
The threshold for approving a loan is t = 0.75 since banks
will only issue a loan if they are confident a user will repay.

Table 4 illustrates that transfer learning significantly im-
proves score parity in the target population, with covariate
shift and even in the unadapted case. We note that this is
not because the source has less dataset bias; in fact, in Ta-
ble 3, we see that the source dataset has larger disparities
in loan approvals over the four demographic groups. PCCS
and TFCS further reduce the four fairness metrics with lit-
tle to no change in AUC for the target population. PCCS
and TFCS outperform Kamiran-Calders, which only yields
results on par with covariate shift. For this application, we
found that increasing λ did not improve the score disparities
for TFCS. Thus Table 4 shows results for λ = 0.01 which
maintains the AUC.

Figure 3 shows the results for PCCS as we vary δ to trade
off improving AUC against reducing the fairness losses.
For δ ≥ 0.08, the weighted prevalence constraints (6) are
loose enough to allow the covariate shift solution w = wCS
and the metrics converge accordingly. The trade-off between
AUC and score parity is seen for smaller δ.

5 Conclusion
This paper has discussed methods that address jointly the
problem of covariate shift between source and target popula-
tions and the need to ensure fairness in a predictor’s outputs
toward protected groups. We have focused specifically on
mean score parity and thresholded score parity measures of

Table 3: Mobile Money outcome disparities between vari-
ous groups in source (original market) and target (new mar-
ket) populations. The disparity is given by Pr(Y = 1|G =
k)− Pr(Y = 1|G = l) with probabilities expressed as per-
centages.

Groups k and l Source Target
female 35+, female under 35 7.0 6.2

female 35+, male 35+ 3.5 1.4
female 35+, male under 35 11.1 9.2
female under 35, male 35+ -3.6 -4.8

female under 35, male under 35 4.1 3.0
male 35+, male under 35 7.7 7.9

Table 4: Results on Mobile Money dataset. Source: Coun-
try 1, Target: Country 2. Disparity measures are shown as
percentages. All metrics are reported for target.

AUC MSP TSP Max Max
loss loss ∆ MSP ∆ TSP

Native 0.658 7.6 23.0 4.9 14.5
Unadapted 0.642 4.2 12.6 2.5 8.1

Covariate Shift 0.639 3.8 11.1 2.7 7.2
Kamiran Calders 0.640 4.0 12.5 2.5 7.7
PCCS (δ = .05) 0.630 2.4 5.7 1.5 3.3
TFCS (λ = .01) 0.639 2.6 6.8 1.8 4.4

Figure 3: Variation of score parities and AUC with the PCCS
trade-off parameter δ for the Mobile Money dataset.

group fairness. Both of the proposed methods, prevalence-
constrained covariate shift (PCCS) and target-fair covari-
ate shift (TFCS), are based on sample reweighting and thus
fit well with existing domain adaptation techniques and a
variety of classification algorithms. Together they can ac-
commodate the important practical limitation of having pro-
tected group information only in the source or target domain.
Tested on two datasets, PCCS and TFCS show reductions in
score disparity compared to baselines with little change in
AUC. The MEPS dataset and mobile money credit dataset
are new to the algorithmic fairness literature and, we believe,



are more reflective of real risk assessment applications than
some prior benchmarks.

Acknowledgments. We acknowledge the helpful com-
ments and feedback of Aldo Pareja. This work was con-
ducted under the auspices of the IBM Science for Social
Good initiative. This research in part was sponsored by the
U.S. Army Research Lab and the U.K. Ministry of De-
fence under Agreement Number W911NF-16-3-0001. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the
U.S. Army Research Laboratory, the U.S. Government, the
U.K. Ministry of Defence or the U.K. Government. The U.S.
and U.K. Governments are authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding
any copyright notation hereon.

References
Agarwal, A.; Beygelzimer, A.; Dudı́k, M.; Langford, J.; and
Wallach, H. 2018. A reductions approach to fair classifica-
tion. In Proc. International Conference on Machine Learn-
ing (ICML).
Baydin, A. G.; Pearlmutter, B. A.; Radul, A. A.; and Siskind,
J. M. 2018. Automatic differentiation in machine learning:
A survey. Journal of Machine Learning Research 18(2):1–
43.
Bickel, S.; Brckner, M.; and Scheffer, T. 2009. Discrim-
inative learning under covariate shift. Journal of Machine
Learning Research 10:2137–2155.
Blankenship, K. M. 1993. Bringing gender and race in:
Us employment discrimination policy. Gender & Society
7(2):204–226.
Chen, J.; Kallus, N.; Mao, X.; Svacha, G.; and Udell,
M. 2018. Fairness under unawareness: Assessing dis-
parity when protected class is unobserved. arXiv preprint
arXiv:1811.11154.
Chouldechova, A. 2017. Fair prediction with disparate im-
pact: A study of bias in recidivism prediction instruments.
Big Data 5(2):153–163.
Cook, T., and McKay, C. 2015. How M-Shwari works: The
story so far. Access to Finance Forum (10).
Corbett-Davies, S.; Pierson, E.; Feller, A.; Goel, S.; and
Huq, A. 2017. Algorithmic decision making and the cost
of fairness. In Proc. ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 797–806.
for Healthcare Research, A., and Quality. 2018. Medical
expenditure panel survey (meps). http://www.ahrq.
gov/research/data/meps/index.html.
Gaulding, J. 1995. Race sex and genetic discrimination
in insurance: Whats fair. Cornell Law Review 80(6):1646–
1694.
Gong, B.; Shi, Y.; Sha, F.; and Grauman, K. 2012. Geodesic
flow kernel for unsupervised domain adaptation. In Proc.
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2066–2073.

Gretton, A.; Smola, A. J.; Huang, J.; Schmittfull, M.; Borg-
wardt, K. M.; and Schölkopf, B. 2009. Covariate shift by
kernel mean matching.
Gupta, M.; Cotter, A.; Milani Fard, M.; and Wang, S. 2018.
Proxy fairness. arXiv:1806.11212.
Kahn, S. 2015. The end of gender rat-
ing: Women’s insurance under the ACA.
https://publicpolicy.wharton.upenn.edu/live/news/819-
the-end-of-gender-rating-womens-insurance-under.
Kamiran, F., and Calders, T. 2012. Data preprocessing tech-
niques for classification without discrimination. Knowledge
and Information Systems 33(1):1–33.
Koh, P. W., and Liang, P. 2017. Understanding black-box
predictions via influence functions. In Proc. International
Conference on Machine Learning, 1885–1894.
Krasanakis, E.; Spyromitros-Xioufis, E.; Papadopoulos, S.;
and Kompatsiaris, Y. 2018. Adaptive sensitive reweighting
to mitigate bias in fairness-aware classification. In Proc. Web
Conference, 853–862.
Maurya, A. 2018. Ieee big data 2017 panel discussion on
bias and transparency. AI Matters 4(2):13–20.
Qin, J. 1998. Inferences for case-control and semiparamet-
ric two-sample density ratio models. Biometrika 85(3):619–
630.
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A Gradient Derivations for TFCS
The following derivation is similar to and takes inspira-
tion from the theory of influence functions (Koh and Liang
2017), which describe the effect of individual training points
on model parameters. Here we consider the effect of re-
weighting all training points at once.

First define Lc to be the re-weighted classification loss in
(12),

Lc(θ̂) =
1

n

∑
i∈S

wCS(xi)L
(
s(xi; θ̂), yi

)
.

The derivative of Lc with respect to each wi is given by the
chain rule as

∂Lc
∂wi

=
(
∇θ̂Lc

)T ∂θ̂

∂wi
, (13)

and similarly for Lf . The second factor in (13) is the vec-
tor of partial derivatives ∂θ̂j/∂wi for all j. Hence for the
combined loss Lt = Lc + λLf ,

∂Lt
∂wi

=
(
∇θ̂Lc + λ∇θ̂Lf

)T ∂θ̂

∂wi
. (14)

To derive an expression for ∂θ̂/∂wi, we use the fact that
if θ̂ is a minimizer in (10), then it must satisfy the first-order
optimality conditions∑

i∈S
wi
∂L
(
s(xi; θ̂), yi

)
∂θ̂j

= 0 ∀j.

For fixed {(xi, yi), i ∈ S}, these conditions give a set of
implicit equations for θ̂ in terms of {wi}. We may obtain
an explicit expression for the derivative ∂θ̂/∂wi using the
method of eliminating differentials (Rogers 1999, Ch. 11)
as follows:

dwi
∂L
(
s(xi; θ̂), yi

)
∂θ̂j

+
∑
i′∈S

wi′
∑
k

∂2L
(
s(xi′ ; θ̂), yi′

)
∂θ̂j∂θ̂k

dθ̂k = 0.

Rewriting in matrix-vector notation,

∇θ̂L
(
s(xi; θ̂), yi

)
+Hθ̂

∂θ̂

∂wi
= 0,

where we have defined

Hθ̂ =
∑
i∈S

wi∇2
θ̂
L
(
s(xi; θ̂), yi

)
. (15)

Hence
∂θ̂

∂wi
= −H−1

θ̂
∇θ̂L

(
s(xi; θ̂), yi

)
. (16)

For the case of binary classification with log loss L (aka
cross-entropy) and logistic regression, we have

L(s, y) = −y log(s)− (1− y) log(1− s),

s(x; θ̂) = σ(θ̂Tx) =
1

1 + e−θ̂T x
.

where σ(t) denotes the sigmoid function 1
1+e−t . Then

∇θ̂s =
e−θ̂

T x(
1 + e−θ̂T x

)2 · x = s(1− s)x, (17)

∇θ̂L = (−y(1− s) + (1− y)s)x. (18)

Using (18) and letting si = s(xi; θ̂), the gradient of the clas-
sification loss is therefore

∇θ̂Lc =
1

n

∑
i∈S

wCS(xi)[−yi(1−si)+(1−yi)si]xi. (19)

Likewise using (17), the gradient of the fairness loss is

∇θLF = 2
∑
k<l

[(
1

|Tk|
∑
i∈Tk

si −
1

|Tl|
∑
i∈Tl

si

)
×(

1

|Tk|
∑
i∈Tk

si
(
1− si

)
xi −

1

|Tl|
∑
i∈Tl

si
(
1− si

)
xi

)]
.

(20)

For the Hessian we find

∇2
θ̂
L = x

(
∇θ̂s

)T
= s(1− s)xxT , (21)

which is needed in (15).
To close this section, we justify the earlier statement that

w = wCS is a stationary point in the case λ = 0. Since θ̂ is
a minimizer in (10), it satisfies

1

n

∑
i∈S

wi∇θL
(
s(xi; θ̂), yi

)
= 0.

The left-hand side coincides with ∇θ̂Lc when w = wCS
and therefore∇θ̂Lc = 0. Combining this with λ = 0 in (14)
implies that∇wLt = 0 at w = wCS .


