

The Right To Confront Your Accusers:
Opening the Black Box of Forensic DNA Software

Jeanna Matthews, Marzieh Babaeianjelodar, Stephen Lorenz, Abigail Matthews (Clarkson University)

Mariama Njie (Iona College), Nathan Adams (Forensic Bioinformatic Services),
Dan Krane (Wright State University), Jessica Goldthwaite and Clinton Hughes (The Legal Aid Society)

Abstract
The results of forensic DNA software systems are regularly
introduced as compelling evidence in criminal trials, but re-
quests by defendants to evaluate how these results are gen-
erated are often denied. Furthermore, there is mounting
evidence of problems such as failures to disclose substantial
changes in methodology to oversight bodies and substantial
differences in the results generated by different software
systems. In a society that purports to guarantee defendants
the right to face their accusers and confront the evidence
against them, what then is the role of black-box forensic
software systems in moral decision making in criminal jus-
tice? In this paper, we examine the case of the Forensic Sta-
tistical Tool (FST), a forensic DNA system developed in
2010 by New York City’s Office of Chief Medical Exam-
iner (OCME). For over 5 years, expert witness review re-
quested by defense teams was denied, even under protective
order, while the system was used in over 1300 criminal
cases. When the first expert review was finally permitted in
2016, many problems were identified including a com-
pletely undisclosed function capable of dropping evidence
that could be beneficial to the defense. Overall, the findings
were so substantial that a motion to release both the review
and the full source code of FST publicly was granted. In this
paper, we present the first analysis of the impact of this un-
disclosed function. We quantify the impact of the change on
over 400 samples from OCME’s own validation study and
discuss the potential impact on individual defendants. Be-
yond this, we consider what changes in the criminal justice
system could prevent problems like this from going unde-
tected and unresolved in the future.

Introduction
Increasingly big decisions about the lives of individuals are
being made in a partnership between human decision mak-
ers and computer systems. In high stakes areas like hiring,
housing, credit and criminal justice, societal principles
negotiated collectively over time could be undermined in
the process of automation. For example, automated sys-
tems are used throughout the criminal justice system from
investigation/policing decisions to pretrial decisions to

decisions about evidence at trial to sentencing decisions to
parole decisions. In this context, it is reasonable to ask
what the impact of these automated systems is on widely
accepted principles of criminal justice decision making
such as the right to a public trial, the rights of defendants to
review and confront the evidence against them and the
right to equal justice under the law.

In this paper, we focus on the Forensic Statistical Tool
(FST), a forensic DNA system developed in 2010 by New
York City’s Office of Chief Medical Examiner (OCME).
We consider what types of oversight human decision mak-
ers were able to provide and what incentives were present
for finding, fixing and disclosing bugs in the system. We
propose a set of modifications to the holistic decision mak-
ing process to encourage bugs in forensic DNA systems
like FST to be found and fixed.

We conduct independent, third-party testing of FST, a
step that we argue should be regularly performed on any
software used in the criminal justice system. Using a col-
lection of over 400 mixed DNA samples of known compo-
sition from OCME’s own validation study, we evaluate the
impact of an undisclosed data-dropping routine discovered
by defense experts during the first source code review ever
permitted. Expert witnesses identified the potential for this
function to drop data that could be helpful to the defense,
but this paper is the first study of the quantitative impact of
the change. We also discuss the current hurdles to inde-
pendent, third-party testing of software used in the criminal
justice system and make concrete suggestions for reducing
those hurdles in the interest of accountability, transpar-
ency, and justice.

Background
Forensic DNA evidence has been an important part of
criminal investigations for decades, but in recent years,
probabilistic genotyping (PG) software has been intro-

duced to interpret evidence that is too complex for manual
human analysis. Substantial concerns about the accuracy
and reliability of this software have been raised by scien-
tists, journalists, and lawyers and there is substantial debate
about its role in moral decision making in criminal justice.

Many factors can complicate forensic DNA interpreta-
tion, making automated software analysis an attractive al-
ternative to human interpretation due to computational
complexity and bias. Environmental factors can degrade
DNA. Evidence samples may contain little DNA available
for testing. DNA can be deposited on an item at different
times. When processing samples, DNA from the sample
can fail to be detected in whole or in part (drop-out), and
random fragments of DNA can be introduced (drop-in).

Models implemented in PG software can vary substan-
tially in how they accommodate – or don’t address – these
issues. PG software also varies in how operator assump-
tions are taken into account, such as the number of con-
tributors to a sample – a value that can only be estimated
when evaluating the evidence sample (e.g. how could one
conclusively determine how many people might have han-
dled a gun) (Paoletti et al. 2005). Additionally, most PG
software assumes that all contributors to a sample are
completely unrelated and from the same ethnic group; an
assumption that is unlikely to be true in many cases.

Finally, there are substantial concerns that results of
software used in the criminal justice system can themselves
reflect inappropriate bias. Investigations into an assault by
a group Hasidic men included concerns about whether PG
software that assumes no relationships between contribu-
tors can accurately distinguish among members of a more
genetically insular population (Kirchner 2017). For crimi-
nal justice software more broadly, ProPublica found that
the COMPAS software used widely throughout the United
States to estimate a defendants risk of committing another
crime was more likely to falsely flag black defendants as
future criminals, while white defendants were mislabeled
as low risk more often than black defendants (Angwin et
al. 2016)(Chouldechova 2017). For facial recognition
software used in criminal justice applications, Buolamwini
and Gebru identify substantially higher error rates for dark-
skinned women than for light-skinned men (Buolamwini
and Gebru 2018).

All of these factors should add up to a need for healthy
skepticism about the design, development, and use of com-
plex software systems used in criminal justice, including
PG software. The field of forensic DNA analysis should
require robust independent review of PG systems prior to
their use in casework and promote investment in their it-
erative improvement. Both in research and in casework, an
emphasis should be placed on comparisons between multi-
ple reasonable systems’ evaluation of the same input data
(Garofano et al. 2015)(NIST 2017). However, this is not
the current state of the field.

Instead, these legitimate concerns have been further
heightened by secrecy. Software vendors aggressively
claim trade secret protection for their software. In many
cases, developers have succeeded in resisting requests by
defense attorneys to allow their own experts to review both
the executable versions and source code of these systems,
even under protective order (Tashea 2017). That is an ex-
treme requirement of secrecy, especially in high-stakes
criminal cases.

Legal scholars and defense attorneys have argued that
defendant rights to confront the evidence against them and
to a public trial should outweigh the intellectual property
interests of software vendors (Wexler 2018). Furthermore,
it has been argued that software vendors already enjoy sub-
stantial commercial protection from a first-mover advan-
tage once the results of their product have been widely
accepted in courtrooms and additional protection may do
more to shield products from legitimate criticism of soft-
ware quality, reliability, and accuracy than to protect intel-
lectual property.

For PG software, peer-reviewed validation studies are
typically conducted by the software developers. Internal
validations conducted by individual laboratories are usu-
ally unpublished, let alone independently reviewed. Rarely
is there adversarial testing by a group incentivized to find
problems and rarely are systems reviewed with an eye to
how errors could impact a particular case or defendant.
Defendants, particularly indigent defendants, rarely have
access to resources to conduct adversarial testing in the
context of their own case and even defense teams willing
and able to do so may be denied access to the materials
necessary to do so effectively.

For FST in particular, OCME refused any independent
review of the source code, supporting software develop-
ment materials, and executables, for years, even under a
protective order. In a 2016 criminal case, a federal judge
finally ordered OCME to provide FST’s source code to the
defense team under a protective order. The team of defense
experts who reviewed the code identified a number of con-
cerns, including a function, CheckFrequencyForRemoval,
that they demonstrated was capable of dropping data that is
helpful to the defense. This function runs counter to the
methodology publicly described in previously sworn testi-
mony and peer-reviewed publications and appears to have
been introduced as a work around for other problems with
the system. Between 2011 and 2017, FST was used in ap-
proximately 1,350 criminal investigations. This timeline of
documented changes to FST suggest that the analyses in
casework involved the version modified in this way.

In retrospect, we know that almost immediately after
bringing FST online in April 2011, OCME had to take FST
offline again for software maintenance. Based Freedom of
Information requests and responses to litigation, we know
that FST was modified in order to bring it back online in

June 2011. It is not unusual to have bugs in software, but
OCME’s response to the problem is telling. Changes, in-
cluding the CheckFrequencyForRemoval function, were
made without any reporting the change to the NY State
Commission on Forensic Science that approved FST for
use in casework. In June 2017, Eugene Lien, OCME Assis-
tant Director said in an affidavit, “Because this modifica-
tion did not affect the methodology of the program, it did
not require submission to the Commission on Forensic
Science or the DNA Subcommittee.” The results of our
work strongly challenge this statement, as we will describe.
 Subsequent to the findings of the defense experts in
2016 and in response to filings by ProPublica and Yale’s
Media Freedom and Information Access Clinic, the judge
unsealed both the experts’ findings (produced originally
under a protective order) and the entire FST source code
that had been so closely guarded by OCME for years. Pro-
Publica then published the findings and the source code on
Github (FST 2017). Appendix 1 contains the source code
for the data-dropping function, CheckFrequencyForRe-
moval, from this Github repository.

This paper represents the first quantitative study of the
impact of the CheckFrequencyForRemoval function. We
will describe in detail how it is possible for this function to
drop data that is helpful to the defense. Then, using over
400 samples of known origin from OCME’s own valida-
tion study, we quantify the impact of the function on the
results both for individuals known to have contributed to a
sample and individuals who did not contribute to the sam-
ple. While we find no evidence of a deliberate attempt to
disadvantage the defense, we do see a willingness to put in
sloppy fixes when problems with the software were identi-
fied. The system as a whole failed to put in the necessary
provisions for accountability and transparency in order to
incentivize disclosure and true repair.

FST and the OCME Validation Study
The NY State Commission on Forensic Science approved
FST for use in casework based on a validation study de-
signed and conducted by OCME. The validation study un-
derlying FST consisted of 439 two- and three-person mix-
tures of varying quantities of DNA and contributor propor-
tions, genotyped using both High Copy Number (HCN)
and Low Copy Number (LCN) protocols. Since these mix-
tures were created in a controlled laboratory setting, their
true contributors and known non-contributors are known.

The 439 mixtures were generated to serve as test evi-
dence samples for which the “correct” answers are known.
These samples were constructed based on single-source
blood and cheek swab samples of known origin as well as
from items handled by multiple individuals, such as a
computer mouse or a pen. Some, but not all, of the

touched items were cleaned with bleach and ethanol prior
to handling. Despite this pre-cleaning step, it is interesting
to note that some samples still contained DNA that did not
belong to any of the deliberate contributors.

OCME evaluated all 439 mixtures in comparison to their
known contributors and a set of 1,246 non-contributors.
The non-contributor set consists of genotypes developed
from OCME morgue bodies and a national data set (Butler
et al 2003). Allele frequency rates were established for
NYC by OCME through genotyping morgue bodies.
OCME developed a subset of these genotypes at only thir-
teen of the fifteen loci used by FST, simulating genotypes
for the remaining two loci. Subpopulations were grouped
by self- or OCME-reporting into African-American, Asian,
Caucasian, and Hispanic categories. The lab removed in-
formation on the races of the donors to the mixtures,
though in publications they do claim that the mixtures rep-
resent the diversity of New York City (Mitchell et al.
2012) (People v. Collins 2013).

OCME originally wanted to validate FST for four-
person mixtures and additional four-person mixtures were
generated during the study, but ultimately FST was not
validated for the evaluation of four-person mixtures
(Mitchell et al. 2012). OCME never published the valida-
tion data set but did produce it in 2012 pursuant to an
agreement reached after litigation in the case People v.
Collins. It was produced in printed form, then scanned and
partly transcribed by the defense team.

Since individuals share alleles and the genotypes of all
individuals are not known, one normally cannot conclude
that a specific individual is the sole possible source of
DNA recovered from an evidence sample. Case law in the
United States requires that a statistical weight of evidence
be provided when an individual cannot be excluded as a
possible contributor to a casework sample, in order to as-
sist them in determining the strength of that evidence. For
example, if one in three individuals could not be excluded
as possible contributors to a particular sample, then the
strength of that conclusion is minimal, while if only one in
a billion individuals could not be excluded, the strength
would be high.

Statistical weights calculated by PG systems are pre-
sented as likelihood ratios (LR), composed of the probabil-
ity of observing the data generated during the course of
testing evidentiary samples, E, given two competing hy-
potheses. These hypotheses are typically constructed as H1
or the prosecutor’s hypothesis, Hp, which includes the de-
fendant as a contributor, and an alternative hypothesis H2,
or the defense hypothesis, Hd, which does not include the
defendant as a contributor. For samples containing DNA
from multiple individuals, both Hp and Hd will include
additional contributors, either assumed contributors whose
genotypes are known or contributors whose identities are

unknown. The common formula, where E is the observed
data is: 𝐿𝑅= Pr ⁡(𝐸|𝐻𝑝) / Pr ⁡(𝐸|𝐻𝑑)

Consequently, a likelihood ratio of 1 is deemed “incon-
clusive” while an LR >1 is inclusionary (suggestive of
guilt) and an LR <1 is exclusionary (suggestive of inno-
cence).

Likelihood ratios are calculated for each locus and mul-
tiplied using the product rule, assuming linkage equilib-
rium between loci. Due to the complexity of forensic DNA
mixture data and measurement uncertainty, it’s generally
held that there is no “ground truth” for LRs, even for sam-
ples of known composition, against which PG results can
be compared for accuracy (Steele and Balding 2014). Con-
sequently, confidence in PG systems is based in the appro-
priateness of the models underlying their algorithms and
the quality of their software development processes and
resulting executables.

Some labs, including OCME, provide “verbal equiva-
lency” for LR values. LRs of 1-10 are described by OCME
as “limited support” for the numerator hypothesis, gener-
ally Hp. Similarly, LRs of 10-100, 100-1000, and 1000+
are described as “moderate,” “strong,” and “very strong,”
respectively (OCME 2016).

For each sample, FST calculates four LR using allele
frequencies from each of OCME’s four default reference
subpopulations (Asian, Black, Caucasian and Hispanic).
As a conservative measure, only the lowest of these four
LR’s is included in the final written report.1

Likelihood ratios are calculated for each locus and mul-
tiplied using the product rule. FST originally included all
15 loci in its calculations, as one would expect. However,
CheckFrequencyForRemoval removes data for loci where
frequencies of observed alleles across all replicate amplifi-
cations summed to ≥97% in any of FST’s four reference
subpopulations. Logically, frequencies over 100% should
not occur, but in practice, they do. There are many things
that could lead to this inaccuracy (e.g. errors introduced by
multiple rounds of amplifications (drop-out errors), con-
tamination errors (drop-in errors) or issues with the use of
minimum allele frequencies. However, rather than deal
with the inaccuracies in a transparent way, OCME chose to
deal with the errors by simply dropping the contribution of
any loci that approaches the 100% boundary. This is done
even if the information at that locus is exculpatory infor-
mation that would have helped the defense or whether it is
inculpatory evidence that would help the prosecution.
Nothing was done to report when this occurred and it is
completely possible that the set of dropped data would
have altered the LR values reported or even the verbal
equivalence category of the result. This clearly seems rele-

1 Conservative: “favoring the defendant. A conservative estimate is delib-
erately chosen to be more favorable to the defendant than the best (unbi-
ased) estimate would be” (NRC 1996).

vant to defense teams, the NY State Commission on Foren-
sic Science and the public, but no such disclosure was
every made by OCME. In the next section, we quantify
how often on OCME’s own validation study this type of
change in the reported LR or the verbal equivalence cate-
gory.

Independent Comparison Testing
In this section, we describe our independent testing of FST.
We describe both how we automated testing of FST and
the results of comparing FST output with and without the
CheckFrequencyForRemoval function. We examine the
impact of that change on both known contributors to sam-
ples in the OCME validation study as well as a set of non-
contributors.

We acquired FST v2.5 from the ProPublica’s GitHub
repository (commit 5b353500d) (FST 2017). FST is a C#
ASP.NET application using an MS SQL database. Its in-
terface is browser-based. We ran it on a QEMU virtual
machine with Windows 10 Pro 64-bit using 32 GB of
RAM and an Intel Xeon processor.

FST’s installation is non-trivial, requiring database con-
nection configuration and a custom Windows service per
installation. For testing purposes, we hard-coded a bypass
for user access control. Two versions of FST v2.5 were
used for all analyses – one with the CheckFrequencyFor-
Removal function enabled and one with it disabled. The
disabled version is intended to emulate the pre-
modification version of FST, though the source code for
that version has not been publicly released. FST does not
provide an external API or command line interface, so we
developed several noninvasive wrapper scripts for automa-
tion.

With and Without CheckFrequencyForRemoval
LRs were generated for all 439 two and three person mix-
tures from FST’s validation study and compared to their
known contributors for a total of 1,245 evaluations. 104
mixtures (23.7%) were subject to the locus-dropping be-
havior. The change in LRs between FST versions is shown
in Figure 1. In Figure 1, we report all four of the LRs re-
ported for each sample, not just the lowest one. The y-axis
value for each point is the LR reported with CheckFre-
quencyForRemoval enabled and the x-axis value is the LR
for the sample without CheckFrequencyForRemoval.
 Figure 1 explores the impact on the results for known
contributors to a sample (a simulation of guilty parties).
Figure 2 explores the impact on the results for non-
contributors (a simulation of innocent individuals). Forty
samples exhibiting locus-dropping behavior during the
known contributor analysis were selected for comparison
against 700 non-contributors from the national data set

using both versions of FST. A range of samples were se-
lected, from 15-575pg of template DNA as well as on the
basis of deducible (20) vs. non-deducible (20); 2-person
mixtures (12) vs. 3-person mixture (28); and HCN (17) vs.
LCN (23). As in Figure 1, we report all four of the LRs
reported for each sample, not just the lowest one. The y-
axis value for each point is the LR reported with Check-
FrequencyForRemoval enabled and the x-axis value is the
LR for the sample without CheckFrequencyForRemoval.
 In both Figure 1 and 2, points above the lightly dotted
line in the center (y=x) represent where the modified ver-
sion of FST reports an LR value that is more inclusionary.
Especially for the non-contributors or simulated innocent
individuals who did not actually contribute to the sample, it
is clear to see that the addition of CheckFrequencyForRe-
moval did result in discarding information helpful to the
defense in many cases.

Figure 1: Known contributor likelihood ratios for FST v2.5 with
the data-dropping function CheckFrequencyForRemoval vs. FST

v2.5 with the function disabled. A log10 scale is used for both
axes.

Changes in Verbal-Scale Equivalent Labels
Changes to LR verbal-scale equivalents are especially

likely to impact the perceived weights of evidence. To ex-
amine this we used only the lowest LR reported for each
sample rather than all four reported LRs as shown in Fig-
ures 1 and 2.

 For the known contributor tests described above,
changes in verbal equivalencies were observed for thirty-
six comparisons (2.9%). Eleven false-exclusions (0.9%)
became more exclusionary when locus-dropping was en-

abled while only two became more inclusionary while still
remaining below LR=1. Three true-inclusion LRs became
falsely exclusionary when locus-dropping was enabled,
and one false-exclusion LR changed to a true inclusion.

Of the 206 LRs for which one or both versions of FST
reported LRs between 0.001-1,000 (“limited,” “moderate,”
or “strong” support for Hp or Hd), 36 LRs (17.5%)
changed verbal equivalents between versions. This sug-
gests that for true-contributor LRs near 1 (inconclusive),
the effect of enabling or disabling CheckFrequencyForRe-
moval could be significant.

Figure 2: Non-contributor likelihood ratios for FST v2.5 with the
data-dropping function vs. FST v2.5 with this function disabled. A

log10 scale is used for both axes.

For the non-contributor tests described above, a false in-
clusion rate of 0.08% is observed across the 28,000 com-
parisons, higher than the 0.03% reported for all analyses
conducted in the FST validation study. Four results
changed from true-exclusion LRs when locus-dropping
was disabled to false-inclusion LRs when locus-dropping
was enabled. Five LRs changed from false inclusions
without locus-dropping to true exclusions when locus-
dropping was enabled.

There were 115 (0.4%) LRs that varied in verbal-scale
equivalency labels between FST versions. Of the 294 LR’s
reported between 0.001-1,000 by one or both FST ver-
sions, those 115 constituted 39.1% of LRs near 1, suggest-
ing that non-contributor LRs near 1 are similarly suscepti-
ble to differences in verbal-scale equivalency labels be-
tween versions of FST.

Appendix 2 contains tables tracking changes in verbal-
scale equivalents for both known contributors and non-

contributors. For this set of samples for OCME’s own vali-
dation study, the number of impacted samples is modest.
However, it still makes clear that the impact does occur
and could impact the fate of individuals in court. Individu-
als impacted would have no way of knowing that data
helpful to their case was dropped and without disclosure of
the FST source, there would have been little to no-
incentive to ever repair the problem.

Criminal Justice Decision Making
Individual defendants and the public often will not have
this opportunity to look under the hood of software used in
criminal justice decision making. So, it is important to use
this case as a lens through which to consider what incen-
tives exist for protecting some of widely accepted decision
making principles such as the right to a public trial, the
rights of defendants to review and confront the evidence
against them and the right to equal justice under the law.
 What incentives exist for debugging black-box software
systems used in the criminal justice system in general?
Would it have been possible for defense teams to find this
issue without source code access? Would it be possible to
know whether this bug is impacting a particular defendant?
What would have been the incentives for disclosure or im-
provement if OCME had been allowed to deny defense
expert review and adversarial testing indefinitely?
 Here we propose a set of modifications to the holistic
decision making process to encourage bugs in forensic
DNA systems like FST to be found and fixed.

One key lesson is the importance of adversarial review
(another cornerstone of the judicial process). If validation
studies are designed by the developers, they are likely to
focus on demonstrating the effectiveness of the system
rather than aggressively route out problems. In an envi-
ronment where any bug report is answered with “you are
just complaining because you are guilty” what incentive
will there be to even investigate reports of errors. Also,
what will counteract the tendency to sweep errors under
the rug when they are found or put in an inappropriate fix
to make the problem go away as we saw in the FST case?
We note that in this case it was the persistence of defense
teams that provided the last stop-gap measure for forcing
debugging of these systems.

For the purposes of accountability, transparency and
enabling of third-party testing, we recommend targeting
the procurement phase of software. When labs use public
money to purchase, validate, and train on PG software,
procurement policies should require or at least give sub-
stantial credit for products that include pro-transparency
factors. Such factors could include open-source software,
access to software engineering artifacts including issue
trackers, internal testing plans and results, software re-

quirements and specifications, hazard and risk assessments,
design documents, etc. Ideally, developers or third-parties
would offer bug bounties or other funding streams to in-
centivize third party testing.

While all models used in forensic DNA labs have been
conceptually described in a public manner, as we have seen
with FST the conceptual model does not always match the
implemented system and the technical descriptions of these
actual systems are lacking. Notably, bug (issue/defect)
trackers and change logs for PG systems vary from non-
existent to secret to publicly accessible.

There are actually many PG software systems that all
purport to do the same task. Each of these systems is
claimed to be a reasonable model for evaluating mixed
DNA, though their underlying mechanisms for calculating
LRs vary. An incriminating result from any one PG sys-
tems can be damning evidence in court. Easier access for
comparison testing would be advantageous if their outputs
could be compared more directly. One key advance would
be surfacing important parameters like drop-in rates, drop-
out rates and the population frequency files used, rather
than burying some values inside the source code. Estab-
lishing common granularities of variation (e.g. different
drop-out rates per loci vs. one overall drop-out rate) would
be an important advance. Common file formats for input
data would be a further improvement, decreasing time
costs and transcription risks (e.g. typos) when comparing
results of different systems.

 Most PG systems are designed with casework in mind.
Many systems have no native ability to batch-process mul-
tiple evidence samples or compare a single evidence item
to multiple reference profiles (e.g. a set of non-contributors
or an offender DNA database). While it is possible to mod-
ify source-available systems to enable batch-processing,
modifications risk introducing defects and require further
software validation. APIs, or at least CLIs, could allow for
easier batch-processing tasks in both casework and re-
search settings. Requiring these during the procurement
phase would be an important advance.

Open-source systems are attractive for obvious reasons
of transparency, accountability, and traceability. It cannot
be overemphasized that the post-validation modification
made to FST was only publicly acknowledged by OCME
after FST’s source code was examined in conjunction with
independent testing. Seemingly minor changes to source
code can have substantial impacts in criminal casework.
 Terms-of-service contracts for software in the criminal
justice space can have clauses preventing third-party re-
view or publishing of results in the terms of service as is
unfortunately common for many commercial systems.
Non-disclosure agreements and protective orders covering
commercial systems, complicate reviews and prevent dis-
semination of results – regardless of how favorable to the

developer or unfavorable to defendants those findings may
be.

References
Alessandrini, F., Cecati, M., Pesaresi, M., Turchi, C., Carle, F.,
and Tagliabracci, A. 2003. Fingerprints as evidence for a genetic
profile: morphological study on fingerprints and analysis of ex-
ogenous and individual factors affecting DNA typing. J. Forensic
Sci. 48, 3 (2003), 586–592.
DOI:https://doi.org/10.1520/JFS2002260
Angwin, J., Larson, J., Mattu, S., and Kirchner, L. 2016. Machine
Bias. ProPublica. Retrieved from
https://www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing
Buolamwini, J. and Gebru, T. 2018. Gender Shades:
Intersectional Accuracy Disparities in Commercial Gender Clas-
sification. Proceedings of Machine Learning Research 81:1–15.
Butler, J., Schoske, R., Vallone, P., Redman, J., Kline, M. et al.
2003. Allele frequencies for 15 autosomal STR loci on US Cau-
casian, African American, and Hispanic populations. J. Forensic
Sci. 48, 4 (2003), 908–911.
Chouldechova, A. 2017. Fair Prediction with Disparate Impact: A
Study of Bias in Recidivism Prediction Instruments. Big Data
5(2):153–163. DOI:https://doi.org/10.1089/big.2016.0047
Forensic Statistical Tool Source Code (FST). 2017.
https://github.com/propublica/nyc-dna-software
Garofano, P., Caneparo, D., D’Amico, G., Vincenti, M., and Al-
ladio, E. 2015. An alternative application of the consensus
method to DNA typing interpretation for Low Template-DNA
mixtures. Forensic Sci. Int. Genet. Suppl. Ser. 5, (2015), e422–
e424. DOI:https://doi.org/10.1016/j.fsigss.2015.09.168
Haned, H., Slooten, K., and Gill, P. 2012. Exploratory data analy-
sis for the interpretation of low template DNA mixtures. Forensic
Sci. Int. Genet. 6, 6 (2012), 762–774.
Kirchner, L. 2017. Thousands of Criminal Cases in New York
Relied on Disputed DNA Testing Techniques. ProPublica. Re-
trieved from https://www.propublica.org/article/thousands-of-
criminal-cases-in-new-york-relied-on-disputed-dna-testing-
techniques
Mitchell, A., Tamariz, J., O’Connell, K., Ducasse, N., Budimlija,
Z., Prinz, M., and Caragine, T. 2012. Validation of a DNA mix-
ture statistics tool incorporating allelic drop-out and drop-in. Fo-
rensic Sci. Int. Genet. 6, 6 (2012), 749–761.
People v. Collins, 2013. 15 N.Y.S.3d 564 (Sup.Ct. Kings Co.
2015), 6/17/2013.
Mitchell, A. 2013. Testimony of Adele Mitchell in admissibility
hearing in People v. Collins, 15 N.Y.S.3d 564 (Sup.Ct. Kings Co.
2015), 5/1/2013; 5/2/2013; 5/21/2013.
National Research Council (NRC). 1996. The Evaluation of Fo-
rensic DNA Evidence. National Academies Press, Washington,
D.C. DOI:https://doi.org/10.17226/5141
New York City Office of the Chief Medical Examiner (OCME).
2016. Forensic Biology Protocols for Forensic STR Analysis:
Forensic Statistical Tool (FST). Retrieved from
https://www1.nyc.gov/assets/ocme/downloads/pdf/technical-
manuals/protocols-for-forensic-str-analysis/forensic-statistical-
tool-fst.pdf

New York City Office of the Chief Medical Examiner. Technical
Manuals (OCME). 2018. Retrieved November 5 2018 from
https://www1.nyc.gov/site/ocme/services/technical-manuals.page
NIST. 2017. NIST to Assess the Reliability of Forensic Methods
for Analyzing DNA Mixtures. Retrieved August 8, 2018 from
https://www.nist.gov/news-events/news/2017/10/nist-assess-
reliability-forensic-methods-analyzing-dna-mixtures
Paoletti, D., Doom, T., Krane, C., Raymer, M., and Krane, D.
2005. Empirical analysis of the STR profiles resulting from con-
ceptual mixtures. J. Forensic Sci. 50(6): 1361–6.
Steele, C. and Balding, D. 2014. Statistical evaluation of forensic
DNA profile evidence. Annu. Rev. Stat. Its Appl. 1, (2014), 361–
384.
Tashea, J. 2017. Defense lawyers want to peek behind the curtain
of probabilistic genotyping. ABA Journal. Retrieved from
http://www.abajournal.com/magazine/article/code_of_science_de
fense_lawyers_want_to_peek_behind_the_curtain_of_probabil
Wexler, R. 2018. Life, Liberty, and Trade Secrets: Intellectual
Property in the Criminal Justice System. Stanford Law Rev. 70, 5
(2018), 1343. DOI:https://doi.org/10.2139/ssrn.2920883
Worth, K. 2018. Framed for Murder By His Own DNA. PBS
Frontline. Retrieved from
https://www.pbs.org/wgbh/frontline/article/framed-for-murder-
by-his-own-dna/

Appendix 1: CheckFrequencyForRemoval
This appendix contains the source code for the function Check-
FrequencyForRemoval, available on github at the following link:
https://github.com/propublica/nyc-dna-
software/blob/master/FST.Common/Comparison.cs.

///	
 This	
 function	
 checks	
 for	
 the	
 total	
 frequencies	
 according	
 to	
 races	

and	
 removes	
 the	
 allelles	
 from	
 calculation	

	
 	
 	
 	
 	
 	
 	
 	
 ///	
 if	
 the	
 sum	
 of	
 frequencies	
 are	
 greater	
 than	
 0.97.	

	
 	
 	
 	
 	
 	
 	
 	
 ///	
 </summary>	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 CheckFrequencyForRemoval(DataTable	
 dtFrequencies)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 if	
 our	
 db	
 connection	
 isn't	
 initialized,	
 do	
 it.	
 then,	
 get	

all	
 the	
 ethnicities	
 (races)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 myDb	
 =	
 myDb	
 ??	
 new	
 Database();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 DataTable	
 raceTable	
 =	
 myDb.getAllEthnics();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 intsr	
 =	
 0;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string[]	
 srem	
 =	
 new	
 string[comparisonLoci.Count];	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 we	
 go	
 through	
 all	
 the	
 comparison	
 loci	
 and	
 check	
 whether	

the	
 sum	
 of	
 the	
 frequencies	
 for	
 that	
 locus	
 is	
 greater	
 than	
 0.97.	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 if	
 it	
 is,	
 we	
 remove	
 the	
 locus.	
 frequencies	
 are	
 only	
 used	

for	
 the	
 alleles	
 in	
 the	
 evidence	
 replicates.	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 comparisonLoci.Count;	
 i++)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 bool	
 blRemove	
 =	
 false;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 get	
 a	
 CSV	
 list	
 of	
 alleles	
 for	
 all	
 the	
 replicates	
 at	
 a	

locus	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 IEnumerable<string>	
 unknownPair	
 =	
 EvidenceAllelesAtLo-­‐

cus(evidenceAlleles[comparisonLoci[i]]);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 check	
 if	
 the	
 frequency	
 is	
 greater	
 than	
 0.97	
 for	
 any	

of	
 the	
 races.	
 frequencies	
 are	
 values	
 for	
 an	
 allele	
 at	
 a	
 locus	
 for	
 a	

certain	
 race	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 foreach	
 (DataRow	
 eachRow	
 in	
 raceTable.Rows)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 raceName	
 =	

eachRow.Field<string>("EthnicName");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 float	
 freqSum	
 =	
 GetFrenquencySum(unknownPair,	
 com-­‐

parisonLoci[i],	
 raceName,	
 dtFrequencies);	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (freqSum	
 >=	
 0.97)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 blRemove	
 =	
 true;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 break;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (blRemove)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 srem[intsr]	
 =	
 comparisonLoci[i];	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 intsr++;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 now	
 we	
 iterate	
 through	
 all	
 the	
 loci	
 and	
 remove	
 them	
 from	

the	
 list	
 of	
 comparison	
 loci,	
 the	
 evidence,	
 and	
 known	
 and	
 comparison	

profiles	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 srem.Length;	
 i++)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (srem[i]	
 !=	
 null)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 locus	
 =	
 srem[i];	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 remove	
 the	
 locus	
 from	
 the	
 comparisons	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 (int	
 j	
 =	
 1;	
 j	
 <=	
 comparison-­‐

Data.NumeratorProfiles.ComparisonCount;	
 j++)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if(comparisonAlleles[j].ContainsKey(locus))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 comparisonAlleles[j].Remove(locus);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 remove	
 the	
 locus	
 from	
 the	
 knowns	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 knownCount	
 =	
 (comparison-­‐

Data.NumeratorProfiles.KnownCount	
 >	
 comparison-­‐

Data.DenominatorProfiles.KnownCount)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ?	
 comparison-­‐

Data.NumeratorProfiles.KnownCount	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 :	
 comparison-­‐

Data.DenominatorProfiles.KnownCount;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 (int	
 j	
 =	
 1;	
 j	
 <=	
 knownCount;	
 j++)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if(knownAlleles[j].ContainsKey(locus))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 knownAlleles[j].Remove(locus);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 remove	
 the	
 locus	
 from	
 the	
 evidence	
 replicates	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 (int	
 j	
 =	
 1;	
 j	
 <=	
 replicates;	
 j++)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if(evidenceAlleles.ContainsKey(locus))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 evidenceAlleles.Remove(locus);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 remove	
 the	
 locus	
 from	
 the	
 list	
 of	
 comparison	
 loci	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 comparisonLoci.Remove(locus);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 }	

Appendix 2: Tables of Changes in Verbal
Scale Equivalent Labels

Table 1: Known-Contributor: Changes in verbal-scale equivalent
labels for known contributor LR’s between versions of FST with
and without locus-dropping behavior. Italicized values on the

diagonal indicate no change in label between versions.

 FST v2.5 with CheckFrequencyForRemoval

 Support for Hd LR =
1 Support for Hp

 V
er

y
st

ro
ng

St
ro

ng

M
od

er
at

e

Li
m

ite
d

In
co

nc
lu

-
si

ve

Li
m

ite
d

M
od

er
at

e

St
ro

ng

V
er

y
st

ro
ng

Very
strong 186 0 0 0 0 0 0 0 0 186 14.9

%
Strong 3 20 1 0 0 0 0 0 0 24 1.9%
Moderate 2 4 19 1 0 0 0 0 0 26 2.1%

Su
pp

or
t f

or

H
d

Limited 0 0 2 16 0 1 0 0 0 19 1.5%

20.5
%

LR = 1 Incon-
clusive 0 0 0 0 0 0 0 0 0 0 0.0% 0.0%

Limited 0 0 1 2 0 24 4 0 0 31 2.5%
Moderate 0 0 0 0 0 1 34 3 0 38 3.1%
Strong 0 0 0 0 0 0 6 57 2 65 5.2%

FS
T

 v
2.

5
w

ith
 C

he
ck

Fr
eq

ue
n-

cy
Fo

rR
em

ov
al

 d
is

ab
le

d

Su
pp

or
t f

or

H
p

Very
strong 0 0 0 0 0 0 1 2 853 856 68.8

%

79.5
%

 191 24 23 19 0 26 45 62 855 1,245

15.3
%

1.9
%

1.8
%

1.5
% 0.0% 2.1

%
3.6
%

5.0
%

68.7
%

 20.6% 79.4%

Table 2: Non-Contributor: Changes in verbal-scale equivalent
labels for non-contributor LR’s between versions of FST with and
without locus-dropping behavior. Italicized values on the diago-

nal indicate no change in label between versions.

 FST v2.5 with CheckFrequencyForRemoval

 Support for Hd LR =
1 Support for Hp

 V
er

y
st

ro
ng

St
ro

ng

M
od

er
at

e

Li
m

ite
d

In
co

nc
lu

-
si

ve

Li
m

ite
d

M
od

er
at

e

St
ro

ng

V
er

y
st

ro
ng

Very
strong

27,70
5 13 1 0 0 0 0 0 0 27,71

9
99.0
%

Strong 42 100 9 0 0 0 0 0 0 151 0.5%
Moderate 9 6 49 9 0 1 0 0 0 74 0.3%

Su
pp

or
t f

or

H
d

Limited 0 1 8 20 0 3 0 0 0 32 0.1%

99.9
%

LR = 1 Incon-
clusive 0 0 0 0 0 0 1 0 0 1 0.0% 0.0%

Limited 2 0 1 2 0 8 5 0 0 18 0.1%
Moderate 0 0 0 0 0 2 1 1 0 4 0.0%
Strong 0 0 0 0 0 0 0 0 0 0 0.0%

FS
T

 v
2.

5
w

ith
 C

he
ck

Fr
eq

ue
n-

cy
Fo

rR
em

ov
al

 d
is

ab
le

d

Su
pp

or
t f

or

H
p

Very
strong 0 0 0 0 0 0 0 0 1 1 0.0%

0.1%

 27,75
8 120 68 31 0 14 7 1 1 28,00

0

99.1
%

0.4
%

0.2
%

0.1
% 0.0% 0.1

%
0.0
%

0.0
%

0.0
%

 99.9% 0.1%

