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Abstract

Society increasingly relies on machine learning models for
automated decision making. Yet, efficiency gains from au-
tomation have come paired with concern for algorithmic dis-
crimination that can systematize inequality. Recent work has
proposed optimal post-processing methods that randomize
classification decisions for a fraction of individuals, in or-
der to achieve fairness measures related to parity in errors
and calibration. These methods, however, have raised con-
cern due to the information inefficiency, intra-group unfair-
ness, and Pareto sub-optimality they entail. The present work
proposes an alternative active framework for fair classifica-
tion, where, in deployment, a decision-maker adaptively ac-
quires information according to the needs of different groups
or individuals, towards balancing disparities in classification
performance. We propose two such methods, where infor-
mation collection is adapted to group- and individual-level
needs respectively. We show on real-world datasets that these
can achieve: 1) calibration and single error parity (e.g., equal
opportunity); and 2) parity in both false positive and false
negative rates (i.e., equal odds). Moreover, we show that
by leveraging their additional degree of freedom, active ap-
proaches can substantially outperform randomization-based
classifiers previously considered optimal, while avoiding lim-
itations such as intra-group unfairness.

1 Introduction
As automated decision-making systems (ADMs) have be-
come increasingly ubiquitous—e.g., in criminal justice
(Kleinberg, Mullainathan, and Raghavan 2016), medical di-
agnosis and treatment (Kleinberg et al. ), human resource
management (Chalfin et al. ), social work (Gillingham
2015), credit (Huang, Chen, and Wang 2007), and insurance
(Siegel 2013)—there is widespread concern about how these
can deepen social inequalities and systematize discrimina-
tion. Consequently, substantial work on defining and opti-
mizing for algorithmic fairness has surged in the last few
years.

Inspired by domains such as race biases in criminal risk
predictions (Flores, Bechtel, and Lowenkamp 2016), a sub-
stantial body of literature has focused on the problem of bal-
ancing classification errors across protected population sub-
groups, towards achieving equal false positive rates, false
negative rates, or both (equal odds). To that end, recent
research has proposed “optimal” post-processing methods
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that randomize decisions of a fraction of individuals to at-
tain group fairness (Hardt et al. 2016; Pleiss et al. 2017).
Yet, strong limitations of randomized approaches have
been noted, such as information wastefulness, Pareto sub-
optimality, and intra-group unfairness (Hardt et al. 2016;
Pleiss et al. 2017; Corbett-Davies and Goel 2018).

Our work aims at overcoming such limitations. We pro-
pose a complementary approach, active fairness, where,
in deployment, an ADM adaptively collects information
(features) about decision subjects; gathering more informa-
tion about groups or individuals harder to classify, towards
achieving equity in predictive performance. Thereby, the ap-
proach leverages a natural affordance of many real-world de-
cision systems—adaptive information collection—and allo-
cates an ADM’s information budget according to group- or
individual-level needs.
Summary of contributions. We propose two methods for
achieving fairness, based on group-level and individual-level
budgets. We show that, without resorting to randomiza-
tion, these methods are able to achieve: a) calibration and a
single-error parity constraint, and b) parity in both false pos-
itive and false negative rates (i.e., equal odds). We show in
four real-world datasets that, with constrained information
budgets, active approaches can substantially outperform ran-
domized approaches previously considered optimal (lower
false positive and false negative rates). Finally, we show
that classifiers using individual-level budgets in combina-
tion with active inquiry tend to dominate classifiers that use
group-level budget constraints.
Intuition and motivating contexts. Consider a patient en-
tering a hospital seeking diagnosis, typically undergoing a
progressive inquiry—measuring vitals, procuring lab tests,
specialists’ opinions, etc. At each step, absent sufficient cer-
tainty, the inquiry continues. Intuitively, a fair health sys-
tem allocates resources to provide all patients similar-quality
diagnoses. Likewise, active inquiry under cost constraints
underlies contexts like disaster response, poverty mapping,
homeland security, recruitment, telemedicine, refugee status
determination, credit and insurance pricing, etc.
Problem formulation. Let X be an n × d feature matrix.
Let X(q) ⊂ X denote a query on a subset of features in X ,
with q ⊂ {0, ..., d}, and x(q)i the partial feature vector of
individual i; and let f(X(q)) be a predictor of class proba-
bility P{Y = 1|X(q)}. We study the classification context
where a decision-maker can choose what information to col-
lect about each decision subject, and seeks to maximize ac-
curacy and fairness under an information budget constraint
b̄ = 1

n

∑
∀i bi < bmax , where bi = |qi| ∈ [0, d] is the



amount of information collected for individual i.
Although this setting is natural to many real-world deci-

sion systems, its affordances and implications to algorith-
mic decision systems—at the intersection of accuracy, fair-
ness, and cost-efficiency—have not been thoroughly stud-
ied. Here, we focus on contexts with constant costs across
features. Yet we note that the active fairness framework al-
lows generalizations to contexts with varied costs across fea-
tures, as well as richer and context-specific utility functions
with potential costs to decision-subjects, such as monetary,
opportunity, or privacy costs.

2 Related Work
Active feature acquisition (AFA). Several probabilistic and
non-probabilistic methods exist for sequential feature query-
ing under budget constraints (Gao and Koller ; Liu et al. ),
dating at least back to (MacKay 1992), and applied in do-
mains such as medical diagnosis (Gorry and Barnett 1968),
customer targeting (Kanani and Melville 2008), and image
classification (Gao and Koller ). To the best of our knowl-
edge, this work is the first to study the implications AFA has
to the algorithmic fairness literature and policy debate. Here,
we use an approach based on probabilistic random forests,
but more sophisticated methods can be used, for example,
for dealing with domains with very high-dimensional input
like medical images (Trapeznikov and Saligrama 2013).
Active learning. Similar to the general AFA setting, this pa-
per assumes that a fixed set of training data is used and that
incremental features of a test sample can be queried. This
differs from the active learning setting in which the system
actively queries training examples that optimize learning e.g.
by balancing exploration and exploitation or maximizing
the expected model change (Settles 2012). We foresee fu-
ture work studying synergies in systems that attain fairness
by actively choosing training samples using active learning
while also applying AFA at test time.
Notions of fairness. Several notions of fairness and their
corresponding formalizations have been proposed, most of
which require that statistical properties hold across two
or more population subgroups. Demographic or statistical
parity requires that decision rates are independent from
group membership (Calders, Kamiran, and Pechenizkiy ;
Zafar et al. 2015; Louizos et al. 2015), such that P{Ŷ =

1|A = 0} = P{Ŷ = 1|A = 1}, for the case of binary
classification and a sensitive attribute A ∈ {0, 1}. Most re-
cent work focuses on meritocratic notions of fairness, or er-
ror rate matching (Hardt et al. 2016; Bechavod and Ligett
2017), such as requiring population subgroups to have equal
false positive rates (FPR), equal false negative rates (FNR),
or both, i.e., P{Ŷ = 1|A = 0, Y = y} = P{Ŷ = 1|A =
1, Y = y}, y ∈ 0, 1. In this work we focus on the latter set
of fairness notions, although generalizations to others, such
as statistical parity, are possible. Refer to (Žliobaitė ) for a
survey on computational measures of fairness.

Achieving Equal Opportunity and Equal Odds
Hardt et al. 2016 proposes parity in FNRs and/or parity in

FPRs as a measure of unfair discrimination across popula-
tion subgroups (Hardt et al. 2016). Parity in both types of
error is referred to as equal odds, and its relaxation, equal-
ity in only FPRs, is conceptualized as equal opportunity, as
in contexts of positive classification it means that subjects
within the positive class have an equal probability of be-
ing correctly classified positive, regardless of group mem-
bership.

Equal opportunity can be achieved simply by shifting up
or down the decision threshold tA—where Ŷ = 1[tA,1](
P̂ (Y = 1|X,A)

)
—for group A or A{. Yet, doing so also

directly affects FNRs, impeding achievement of equal odds.
In this context, Hardt et al. 2016 propose a classifier that
balances both FPRs and FNRs, based on naive randomiza-
tion of a fraction of individuals in the advantaged group; and
prove conditions under which the classifier is optimal with
respect to accuracy (Hardt et al. 2016).

Although effective in achieving equal odds, these
randomization-based results have been considered discour-
aging for reasons outlined below, and, as shown in Section
6, are outperformed by active approaches.

Achieving Calibration and Error Parity
In many real-world uses of algorithms for risk estima-
tion, it is common practice to require that predictions
are calibrated—e.g., in recidivism (Flores, Bechtel, and
Lowenkamp 2016; Corbett-Davies et al. 2017), child mal-
treatment hotlines (Gillingham 2015; Chouldechova et al.
2018), and credit risk assessments (Huang, Chen, and Wang
2007). A calibrated estimator is one where, if we look at
the subset of people who receive any given probability es-
timate p ∈ [0, 1], we find indeed a p fraction of them to be
positive instances of the classification problem. In the con-
text of credit assignment, for example, we would expect a p
fraction of credit applicants with estimated default risk of p
to default. Moreover, in the context of algorithmic fairness
across population groups, it is desired that calibration holds
for each group (Flores, Bechtel, and Lowenkamp 2016).

Calibration is not necessary nor sufficient to achieve par-
ity in classification errors (Corbett-Davies and Goel 2018).
However, it is particularly desirable in cases where the out-
put of an algorithm is not directly a decision but used as in-
put to the subsequent judgment of a human decision-maker.
In such contexts, risk estimates of an uncalibrated algorithm
would carry a different meaning for different groups (e.g.,
African-American and white defendants), and hence their
use in informing human judges’ decisions would likely en-
tail disparate impact.

Recently, Kleinberg et al. 2016 demonstrated that a ten-
sion exists between minimizing error disparity across differ-
ent population groups and maintaining calibrated probability
estimates (Kleinberg, Mullainathan, and Raghavan 2016). In
particular, it showed that calibration is compatible only with
a single error constraint (i.e. equal FNR or equal FPR). On
the same vein, Pleiss et al. 2017 showed that the results hold
for even a strong relaxation of equal odds, named equal cost,
where FPRs and FNRs are allowed to compensate one an-
other according to a cost function (Pleiss et al. 2017). Fi-
nally, they propose a method that, using naive randomiza-
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Figure 1: Achieving calibration and single error rate parity: classifiers with group-level information budgets vs. naive random-
ization. Rows correspond to analysis on two different datasets: the Mexican poverty and adult income datasets. Green and
yellow colors correspond to error rates for two population subgroups (e.g., white and non-white individuals). Solid black lines
represent the space of calibrated classifiers. Panels in the first column (A and D) show the generalized false positive and false
negative rates (GFPR and GFNR) of classifiers that randomize an increasing proportion of individuals (0% to 100%), as in
(Pleiss et al. 2017). In line with (Pleiss et al. 2017), naive randomization is able to achieve calibration and any single error
parity constraint. Panels in the second column (B and E) show the same analysis for classifiers with group-level budgets. These
classifiers are effective in achieving parity on either false positive or false negative rates, or equal cost, while maintaining cal-
ibration; yet without resorting to naive randomization. Finally, panels in the third column (C and F) compare the efficiency of
both methods, by showing the best classifiers that achieve equal opportunity and calibration, under an information budget re-
striction b̄ = 1

n

∑
∀i bi < bmax . Classifiers with group-level budgets Pareto-dominate randomized classifiers by a wide margin,

i.e. for the same information budget, both population subgroups are better off, incurring substantially lower false positive and
false negative errors.

tion, is able to achieve parity on either error rate or equal
cost. We compare our methods to these benchmarks in Sec-
tion 5.

Objections to naive randomization
The above results on achieving equal odds, as well as on
jointly achieving calibration and a single error parity mea-
sure, rely on naive randomization as means to fairness.
Hence, they have been interpreted as unintuitive, discour-
aging, and unsettling (Hardt et al. 2016; Pleiss et al. 2017;
Corbett-Davies and Goel 2018). Several objections have
been put forth against the use of naive randomization to
achieve classification parity. Among them:
Inefficiency. As pointed out by (Hardt et al. 2016; Pleiss et
al. 2017; Corbett-Davies and Goel 2018), it is inefficient and

appears unintuitive to withhold information that is already in
hand, by naively randomizing the classification of a subset
of individuals.

Individual unfairness. Classifiers based on naive random-
ization, such as those in (Hardt et al. 2016; Pleiss et al. 2017;
Corbett-Davies and Goel 2018), entail intra-group unfair-
ness. Individuals who are randomized are not necessarily
those with higher uncertainty but simply the ones who were
unlucky, hence breaking ordinality between the probability
of classification error and the underlying uncertainty.

Pareto sub-optimality and undesirability. Consider an un-
constrained and unfair classifier ŶU , which incurs higher
errors on group A than group B; and consider an alterna-
tive ”fair” classifier ŶF , where a percentage of individu-



als of group B are randomized to achieve parity in errors.
Considering groups A and B as the system’s stakeholders,
we note that the original unfair classifier ŶU Pareto domi-
nates the fair alternative ŶF , i.e.: the disadvantaged group A
will be indifferent, as its classification remained unchanged,
while groupB will strongly prefer ŶU , the original classifier
before accuracy was degraded by randomization. No group
would prefer ŶF .

3 Active Fairness
The present work explores active feature acquisition ap-
proaches for achieving fairness, where a decision-maker
adaptively acquires information according to the needs of
different groups or individuals, in order to balance dispari-
ties in classification performance. This section defines two
such strategies, one that allocates group-level information
budgets—constant for all members of a group—and one
that allocates individual-level information budgets, which
are computed dynamically at test time. Sections 5 and 6
demonstrate their use and advantages in attaining fairness.

Preliminaries. We denote data of each decision subject as a
pair (x, y), where x is a feature vector of dimensionality d,
and y is an outcome of interest. Let S = (xi, yi)ni=1 denote a
labeled dataset, andA ⊂ S represent a population subgroup.
Let Ŷ (X) be a binary classifier. We denote by FPRA(Ŷ )

and FNRA(Ŷ ) the false positive and false negative rates of
{(x, y) ∈ A}, and define disparity measures with respect to
A in terms of the following FPR and FNR differences:

DA
FPR =

∣∣FPRA(Ŷ )− FPRA{(Ŷ )
∣∣

DA
FNR =

∣∣FNRA(Ŷ )− FNRA{(Ŷ )
∣∣

Equal opportunity—or FNR parity—with respect toA re-
quires that DA

FNR = 0, while equal odds requires that both
DA

FNR = DA
FPR = 0 (Hardt et al. 2016).

3.1 Group-Level Information Budgets
Let bA, bB be the information budgets for population sub-
groups A,B. We define predictor hg with group-level infor-
mation budgets bA, bB by:

hg(xi) =

{
f(x

(qA)
i ) if i ∈ A

f(x
(qB)
i ) if i ∈ B

where qA, qB are feature sets that satisfy |qA| = bA and
|qB | = bB . Sections 5 and 6 show how decision-makers can
achieve calibration and group-level equity by allocating bud-
gets bA, bB .

3.2 Individual-Level Information Budgets
Beyond group-level budgets, an ADM may adaptively col-
lect information of each decision subject until a confidence
threshold is met, upon which a classification decision is
made. Thereby, individual-level information budgets are set
dynamically according to the needs of each decision subject,
towards attaining equity.

In particular, Algorithm 1 specifies active inquiry at the
individual level as the decision-making process that, given
lower and upper probability thresholds αl, αu ∈ (0, 1), and
for each decision subject i, progressively expands the infor-
mation set x(qi)i until either threshold is met, or the available
feature set is exhausted. Together with the decision thresh-
old, αl and αu control trade-offs between FPR and FNR. In
line with related AFA methods (Gao and Koller ), we apply
early stopping to ensure we stop expanding the feature set if
the classification confidence is no longer improving signif-
icantly. We estimate the parameter for early stopping using
grid search while maximizing the AUC for a given budget.

We define predictor hind with individual-level informa-
tion budgets as hind(xi) = f(x

(qi)
i ), where qi is the feature

set according to active inquiry in Algorithm 1.

Algorithm 1: Active inquiry at the individual level
Input: data X , model f , probabilities (αl, αu), decision
threshold t;
for i = 1 to i = n do

while f(x
(qi)
i ) ≤ αu and f(x

(qi)
i ) ≥ αl and

|qi| < d and not e do
j′ ← Get next best feature j′ /∈ qi ;
x
(qi)
i ← x

(qi)
i ∪ xij′ ;

e← early stopping( x(qi)i , xij′ ) ;
end
ŷi = 1[t,1]

(
f(x

(qi)
i )

)
;

end
return (qi)

n
i=1, Ŷ ;

3.3 Random Forest Implementation
Implementation of active classifiers requires two elements:
(1) a model f , able to estimate P{Y |X(q)} for arbitrary fea-
ture subsets X(q), with q ∈ [0, d], and (2) a feature selec-
tion method for choosing expanding feature sets, either at
the group- or individual-level.
Probabilistic model. We implement distribution-based clas-
sification with incomplete data based on a probabilistic ran-
dom forest and extending related methods for dealing with
incomplete data in trees (Quinlan 2014; Saar-Tsechansky
and Provost 2007). In particular, when given an arbitrarily
incomplete feature vector x(q)i , the algorithm traverses all
possible paths of each tree according to the following rule:
if value xij for the current decision node is available in q,
the search follows the path according to the node’s decision
function; otherwise, if the value is not available (j /∈ q), the
search follows both paths. We then compute classification
probabilities as a weighted average of the leaf purity across
all leaves landed on by the search. Finally, we compute the
average predicted probability across all trees. Similar meth-
ods can be derived for adapting logistic regressions to admit
arbitrarily incomplete feature vectors (Williams et al. 2005;
Saar-Tsechansky and Provost 2007).



Static feature selection. We first consider a static feature
ranking for guiding the acquisition of additional features in
Algorithm 1, based on feature importance derived from the
random forest inter-trees variability. Hence, under static fea-
ture selection, given feature ranking R, the group-level bud-
get classifier uses the top-bA variables inR for classification
of any i ∈ A, and the top-bB variables in R for any i ∈ B.
Similarly, the individual-level budgets classifier collects the
top-bi features in R in order to classify each subject i.
Dynamic feature selection. In the same vein, we consider
dynamic or personalized feature selection, given its poten-
tial for increased individual-level equity and overall cost-
efficiency. For it we implemented a greedy feature selection
algorithm, which, for each subject i, and at each feature col-
lection iteration, searches for the feature j′ /∈ qi that maxi-
mizes the difference between the current predicted probabil-
ity P̂ and the expected probability given that an additional
feature j′ is queried, given by:

j′ = arg max
{j:j /∈qi,j∈[0,d]}

∣∣P̂{yi = 1|x(qi∪j′)
i }−P̂{yi = 1|x(qi)i }

∣∣
4 Datasets

We study these methods and compare them to
randomization-based approaches on four real-world,
public datasets. All results are computed using random
80%/20% train/test splits.

Mexican poverty. Targeted social programs are challenged
with household poverty prediction in order to determine el-
igibility (Ibarrarán et al. 2017). This dataset is extracted
from the Mexican household survey 2016, which contains
ground-truth household poverty levels, as well as a series of
visible household features on which inferences are based.
The dataset comprises a sample of 70,305 households in
Mexico, with 183 categorical and continuous features, re-
lated to households’ observable attributes and other socio-
demographic features. Classification is binary according to
the country’s official poverty line, with 36% of the house-
holds having the label poor. We study fairness across groups
defined by a) young and old families, split by the mean
(where 53% are young), and b) across families living in ur-
ban and rural areas (where 64% are urban).
Adult income. The Adult Dataset from UCI Machine Learn-
ing Repository (Lichman and others 2013) comprises 14 de-
mographic and occupational attributes for 49,000 individu-
als, with the goal of classifying whether a person’s income is
above $50,000 (25% are above), and using ethnicity (whites
v. non-whites) as sensitive attribute (where 86% are white).
German credit. The German Credit dataset from UCI Ma-
chine Learning Repository consists of 1000 instances, of
which 70% correspond to credit-worthy applicants and 30%
correspond to applicants to whom credit should not be ex-
tended. Each applicant is described by 24 attributes. The
sensitive attribute describes whether people are below or
above the mean age (60% is below).
Heart health prediction. The Heart Dataset from the UCI
Machine Learning Repository contains 17 features from 906

adults. The target is to accurately predict whether or not an
individual has a heart condition (54% has a heart condition).
The sensitive attribute is whether people are below or above
the mean age (46% is below).

5 Achieving Equal Opportunity &
Calibration

This section demonstrates how an active strategy with
group-level budgets can be used to achieve calibration and
single error parity, resulting in a higher efficiency and with-
out resorting to naive randomization.

We follow (Pleiss et al. 2017) and study predictive perfor-
mance in terms of the generalized false positive (GFPR) and
false negative rates (GFNR), appropriate for contexts where
risk scores themselves are the outputs of the algorithm (as
opposed to fully automated classification). We aim at de-
signing classifiers that satisfy calibration and error parity. As
shown by (Kleinberg, Mullainathan, and Raghavan 2016),
the GFNR and GFPR of all calibrated classifiers for a given
group A fall along the straight line with slope (1−µA)/µA,
where µA = P (Y = 1|A) is A’s base-rate, and origin in the
perfect classifier with (GFPR,GFNR) = (0, 0).

Panels A and D in Figure 1 show the space of calibrated
classifiers achievable by naive randomization (method in
(Pleiss et al. 2017)), for the Mexican poverty and adult in-
come datasets described in Section 4. These replicate results
from (Pleiss et al. 2017), showing how naive randomization
of individuals in the advantaged group can, by eroding pre-
diction performance, achieve calibration as well as either
parity in false positives, parity in false negatives (but not
both), or an equal cost generalization.

Similarly, panels B and E in Figure 1 demonstrate how
calibration and either of the three parity objectives can be
achieved by adjusting information budgets according to the
groups’ needs, without resorting to naive randomization.
Moreover, the right column in Figure 1 shows that classi-
fiers with group-level budgets achieve these fairness goals
with much higher efficiency in terms of information cost.
In particular, we set an overall information budget restric-
tion for both types of classifiers, equal to the minimum bud-
get required by the naive random classifier to achieve equal
opportunity. It is observed in panels C and F that the classi-
fiers with group-level budgets Pareto-dominate random clas-
sifiers by a wide margin, on both datasets, i.e.: for the same
information budget, both population subgroups are better
off, being exposed to substantially lower false positive and
false negative errors.

6 Achieving Equal Odds
This section shows how active methods with group- and
individual-level information budgets can be used to achieve
parity in false positives and false negatives.

Figure 2 illustrates the achievable regions in FPR-FNR
space for classifiers with group-level information budgets,
for two subgroups in the Mexican poverty dataset. It is ob-
served that urban households are more predictable than ru-
ral households (achievable regions closer to the origin). The
yellow and purple areas comprise the achievable regions for
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Figure 2: Achieving parity in false positives and false nega-
tives (equal odds) via group-level information budgets. Re-
sults correspond to the Mexican poverty dataset. Achiev-
able regions of classifiers for each population subgroup are
plotted in blue and yellow. The outer and inner FPR-FNR
curves of each achievable region correspond to classifiers
using maximum and minimum information budgets. Points
along the curve correspond to different values of the de-
cision threshold. It is observed that active classifiers with
group-level budgets achieve parity in both FNR and FPR
(equal odds). Moreover, they provide equal odds solutions
anywhere on the overlap of the achievable regions for both
subgroups and thus along the entire FNR-FPR trade-off.

urban and rural groups. A substantial overlap is observed,
showing a wide-ranged achievable region for equal odds.

In a similar way, we can obtain the achievable region of
active classifiers with individual-level information budgets,
by varying parameters αl < αu ∈ [0, 1] of Algorithm 1 (see
Section 3).

We ran experiments to compare the three methods—naive
randomization (as in (Hardt et al. 2016)), group-level bud-
gets, and individual-level budgets—and their performance
in achieving equal odds solutions along the FNR-FPR trade-
off. In particular, we introduce an information budget con-
straint b̄ = 1

n

∑
∀i bi < bmax , and compare solutions sets

that satisfy it. Solutions of individual- and group-level clas-
sifiers are discrete, due to finite sample sizes and features
dimensionality.

Figure 3 shows results for three real-world datasets: Mex-
ican poverty, German credit, and Heart health datasets. We
left out the Adult Income dataset used in Fig. 1 since there
exists no overlap between achievable regions for both sub-
groups and therefore we cannot achieve equal odds. Points
in the FNR-FPR space were filtered to include only classifier
designs that satisfied equal odds and an overall information
budget constraint bmax .

It is observed that both group-level and individual-level
strategies yield equal odds solutions, covering a wide range
along the FNR-FPR trade-off curve, and without resorting
to naive randomization. Moreover, it is shown that both
type of active classifiers are substantially more information-
efficient than the randomized classifier—Pareto dominance

along most of the FNR-FPR trade-off curve—leading to
lower false positive and false negative errors in budget-
constrained environments. Finally, active classifiers with
individual-level budgets tend to dominate classifiers with
group-level budgets, due to their more efficient use of in-
formation by means of personalized inquiry.

7 Conclusions
We have proposed and demonstrated methods for simulta-
neously achieving equal opportunity and calibration, as well
as for achieving equal odds. In contrast to prior work, the
active framework does not rely on naive randomization to
reach these fairness notions, avoiding several known dis-
advantages of randomized approaches. Instead, a decision-
maker acquires partial information sets according to the
needs of different groups or individuals, allocating resources
equitably in order to achieve balance in predictive perfor-
mance. By leveraging this additional degree of freedom, ac-
tive approaches can outperform randomization-based clas-
sifiers previously considered optimal. Moreover, classifiers
with individual-level budgets dominated their group-level
counterparts. Finally, the extent to which the former can as
well reduce intra-group unfairness is a relevant question left
to future work.

More broadly, this work illustrates how, by jointly con-
sidering information collection, inference, and decision-
making processes, we can design automated decision sys-
tems that more flexibly optimize social objectives, includ-
ing fairness, accuracy, efficiency, and privacy. A natural di-
rection for future work is to consider richer utility func-
tions relevant to real-world decision systems. We expect fu-
ture studies that generalize results here presented to contexts
with varying feature costs; as well as to contexts with multi-
stakeholder value functions, where the opportunity, privacy,
and monetary costs that inquiry and decision-making bring
to decision-subjects are jointly considered as part of the
adaptive inquiry process.

Lastly, a relevant path forward is to allow observations
with partial feature sets both during training and test phases.
The current implementation of this work necessitates access
to full-feature observations at training time. More efficient
training and further model refinement could be achieved un-
der schemes that can learn from partial feature vectors, or
proactively collect features at training time; allowing to in-
corporate a wider set of features tailored to increase predic-
tion accuracy over different types of individuals.
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Žliobaitė, I. Measuring discrimination in algorithmic decision
making. Data Mining and Knowledge Discovery 31(4).


