
Counterfactual Fairness in Text Classification through Robustness

Sahaj Garg1*, Vincent Perot2, Nicole Limtiaco2, Ankur Taly3, Ed H. Chi3, Alex Beutel2
1Stanford University, Stanford, CA

2Google AI, New York, NY
3Google AI, Mountain View, CA

*Work done while the author was an intern at Google.
sahajg@cs.stanford.edu, {vperot, nlimtiaco, ataly, edchi, alexbeutel}@google.com

Abstract

In this paper, we study counterfactual fairness in text clas-
sification, which asks the question: How would the predic-
tion change if the sensitive attribute referenced in the example
were different? Toxicity classifiers demonstrate a counterfac-
tual fairness issue by predicting that “Some people are gay” is
toxic while “Some people are straight” is nontoxic. We offer
a metric, counterfactual token fairness (CTF), for measuring
this particular form of fairness in text classifiers, and describe
its relationship with group fairness. Further, we offer three ap-
proaches, blindness, counterfactual augmentation, and coun-
terfactual logit pairing (CLP), for optimizing counterfactual
token fairness during training, bridging the robustness and
fairness literature. Empirically, we find that blindness and
CLP address counterfactual token fairness. The methods do
not harm classifier performance, and have varying tradeoffs
with group fairness. These approaches, both for measurement
and optimization, provide a new path forward for addressing
fairness concerns in text classification.

Introduction
Consider a model that determines whether an Internet forum
comment is toxic. We would like to improve the model’s
fairness with respect to the content of the input text, which
may reference sensitive identity attributes, such as sexual
orientation, race, or religion. In practice, Dixon et al. showed
that a toxicity model had a high false positive rate on ex-
amples that included identity tokens such as “gay,” because
such tokens occur relatively frequently in examples labeled
toxic in the training set.

A related issue to users arises when nearly identical sen-
tences referencing different identity groups receive different
predictions. For instance, a baseline toxicity model predicts
that “Some people are gay” is 98% likely to be toxic and
“Some people are straight” is only 2% likely to be toxic. In
this work, we seek to specifically address this fairness issue
for text classification.

Given an example, we ask a counterfactual question: How
would the prediction change if the sensitive attribute refer-
enced in the example were different? If the prediction score
changes with respect to a sensitive attribute, we consider this
an indicator of a potential problem. In contrast to group-
based notions of fairness (e.g., demographic parity, equal-
ity of odds), which seek to statistically equalize the model’s

behavior for entire sensitive groups, counterfactual fairness
requires equal model behavior on individual counterfactual
pairs; see (Kusner et al. 2017; Wachter, Mittelstadt, and Rus-
sell 2017).

To assess counterfactual fairness, we consider perturba-
tions obtained by substituting tokens associated with iden-
tity groups. For instance, substituting “gay” with “straight,”
or “Asian” with “American.” Based on these generated coun-
terfactuals, we can define a fairness metric, which we call
counterfactual token fairness (CTF). While this is more lim-
ited than general counterfactual fairness, we believe it cap-
tures one of the most salient issues in text classification and
is a starting point for more general counterfactual fairness
metrics for text.

Deciding when counterfactual pairs should have the same
prediction raises difficult ethical and philosophical ques-
tions. Many logical counterfactuals generated by token sub-
stitution may not require identical output. We call these
asymmetric counterfactuals. In toxicity classification, such
situations could arise when the comment references stereo-
types associated with one group but not another, or when
comments attack a particularly vulnerable group. Asymmet-
ric counterfactuals suggest that practitioners should be care-
ful in both training and evaluation of counterfactual fairness.
We discuss proposals for addressing this in the case of toxi-
city classification in the experiments section.

To satisfy counterfactual token fairness, we borrow tech-
niques from the robustness literature. We propose a gen-
eral training scheme for achieving arbitrary counterfactual
fairness by extending logit pairing (Kannan, Kurakin, and
Goodfellow 2018) to penalize differences in the model’s out-
puts for counterfactual pairs. We compare this method to
simply augmenting the training set with counterfactual ex-
amples, and to blindness, which replaces all sensitive tokens
with a special token.

One issue is that the aforementioned methods may only
achieve fairness with respect to identity tokens considered
by counterfactuals during training. To address this, we eval-
uate the generalization of the methods on a held-out set of
identity tokens. Another concern when optimizing for coun-
terfactual fairness is potential trade-offs with other desir-
able properties of a classifier, including overall accuracy and
group fairness. In practice, we do not find significant harms
with respect to accuracy, and varying effects on group fair-



ness in the form of tradeoffs between true negatives and true
positives.

We make the following contributions:
• Metric: We provide a tractable metric, counterfactual to-

ken fairness, for measuring counterfactual fairness in text
classification.

• Methods: We study three methods for addressing coun-
terfactual token fairness: (A) blindness, (B) counterfac-
tual augmentation, and (B) counterfactual logit pairing,
bridging research from the robustness and fairness do-
mains.

• Empirical Evaluation: We evaluate empirical perfor-
mance and tradeoffs of counterfactual token fairness,
group fairness, and accuracy across these approaches.

Related Work
ML Fairness Significant work in the ML fairness litera-
ture has been devoted to measuring fairness. Our work is
most closely related to counterfactual fairness in causal in-
ference (Kusner et al. 2017; Kilbertus et al. 2017), where
fairness is evaluated by applying counterfactual interven-
tions over a causal graph. Our definition of counterfactual
token fairness implicitly defines a simple causal model for
text generation. Kusner et al. also draw the connection be-
tween counterfactual fairness and individual fairness, which
requires similar predictions for similar inputs via a Lipschitz
constraint (Dwork et al. 2011).

Relatively more study has been devoted to group fairness
metrics, which evaluate observational criteria, or statistical
relationships between the data, group membership, the la-
bel, and the model’s prediction. Such metrics include demo-
graphic parity and equality of odds (Hardt, Price, and Srebro
2016). Hardt, Price, and Srebro demonstrate that observa-
tional criteria are insufficient to distinguish between some
seemingly reasonable uses of identity and other unreason-
able ones. This is because observational criteria cannot in-
corporate any external understanding about what is causally
acceptable in making predictions. The limitations of obser-
vational criteria can be addressed by counterfactual or indi-
vidual fairness, see (Kusner et al. 2017; Kilbertus et al. 2017;
Dwork et al. 2011). By extending these definitions to path-
specific counterfactual fairness, it is possible to specify
which uses of identity are acceptable (Chiappa and Gillam
2018).

Social science literature on fairness raises arguments for
counterfactual reasoning as well as potential limitations.
One concern is about the ability to reasonably intervene on
identity of an individual. Given that most social scientists
agree that race is socially constructed, it may be unreason-
able to attempt to modify race and all its associated factors
(Kohler-Hausmann 2019). These limitations, among others,
are reflected in debate surrounding the use of counterfac-
tuals over race in epidemiological studies (Krieger 2014;
VanderWeele and Robinson 2014). We note that our work
deals with well-defined interventions on content by only ma-
nipulating identity tokens in text, rather than the actual iden-
tities of individuals, which differentiates it from the work
above.

ML fairness literature has also focused on debiasing
methods to address these gaps. Many methods have been
proposed to address group fairness issues, such as re-
calibrating score functions (Hardt, Price, and Srebro 2016),
adversarially learning fair representations (Zemel et al.
2013; Louizos et al. 2015; Beutel et al. 2017), data rebal-
ancing (Dixon et al. 2018), and data augmentation using
swaps of gender terms (Park, Shin, and Fung 2018). For nat-
ural language problems, Pryzant et al. learn a lexicon that
is uncorrelated to a set of confounding variables. Debias-
ing methods for counterfactual or individual fairness have
been studied less for neural network models. The methods
in (Kusner et al. 2017; Kilbertus et al. 2017) are effective
for causal graphs, but most machine learning problems will
not fit this mold. To address individual fairness, (Dwork et
al. 2011) applies constraint based optimization over a linear
program, but it is difficult to define valid distance metrics or
apply the optimization to arbitrary neural networks used in
natural language processing.

Robustness in Machine Learning The robustness liter-
ature in machine learning has primarily focused on ro-
bustness to adversarially perturbed inputs, which add small
amounts of carefully selected noise to fool classifiers (Good-
fellow, Shlens, and Szegedy 2015). When applied to the
text setting, such adversarial examples can be generated
by a variety of editing methods, including through transla-
tion (Ribeiro, Singh, and Guestrin 2018), attributions (Mu-
drakarta et al. 2018), and autoencoders (Zhao, Dua, and
Singh 2017) (Hu et al. 2017). Adversarial examples are
closely related to counterfactual examples: Wachter, Mittel-
stadt, and Russell characterize counterfactuals as adversar-
ial examples that perturb inputs in human-interpretable and
possibly problematic ways. As such, the counterfactual ex-
amples presented in this work can be viewed as a specific
subset of adversarial examples. The robustness literature has
attempted to address adversarial examples using a variety of
techniques, such as adversarial training (Madry et al. 2017;
Goodfellow, Shlens, and Szegedy 2015) and adversarial
logit pairing (Kannan, Kurakin, and Goodfellow 2018).

Several papers draw connections between fairness, text
generation, and robustness. Landeiro and Culotta consider
robustness in text with respect to counfounding variables
such as the author’s gender, and learn robust models by train-
ing using an additional attribute for the latent confound, and
averaging over all values of the latent variable at inference
time. Madaan et al. attempt to edit text to remove gender
bias or edit gender representations, leveraging analogies in
word vector differences to make substitutions for words that
may implicitly encode biases about gender.

Problem Definition
Given text input x ∈ X , where x is a sequence [x1, ..., xn]
of tokens, our task is to predict an outcome y. We consider
a classifier f parameterized by θ that produces a prediction
ŷ = fθ(x), where we seek to minimize some notion of error
between y and ŷ. For notational simplicity, we restrict the
following definitions to a single binary class, but they can
be easily generalized to multi-class classification problems.



The classifier f can be an arbitrary neural network.
We wish to maximize the model’s performance while

maintaining counterfactual fairness with respect to sensitive
attributes, such as identity groups. Counterfactual fairness
is measured using counterfactual examples that perturb the
sensitive attribute referenced in the example at hand. Let
Φ(x) denote the set of counterfactual examples associated
with an example x. Counterfactual fairness requires that the
predictions of a model for all counterfactuals are within a
specified error.

Definition 1. Counterfactual fairness. A classifier f is
counterfactually fair with respect to a counterfactual gen-
eration function Φ and some error rate ε if

|f(x)− f(x′)| ≤ ε ∀x ∈ X,x′ ∈ Φ(x)

Counterfactual Token Fairness (CTF)
We consider a narrow class of counterfactuals that involves
substituting identity tokens in the input, for instance, substi-
tuting “gay” with “straight” in the input “Some people are
gay.” We assume a set of identity tokens, A, for which we
seek to be counterfactually fair. Consider a pair of tokens
a, a′ ∈ A. The associated counterfactual example genera-
tion function Φa,a′ is defined by substituting all occurrences
of a in x with a′ and vice versa. If neither identity token
is present in the input x, then Φa,a′(x) = ∅. We generalize
this definition to a counterfactual generation function over
A that generates all counterfactual examples based on pairs
of substitutions:

ΦA(x) =
⋃

a 6=a′∈A

Φa,a′(x)

Definition 2. A classifier satisfies counterfactual token fair-
ness with respect to a set of identity tokens A if it satis-
fies counterfactual fairness with respect to the counterfactual
generation function ΦA and error rate ε.

Although content about sensitive groups may be captured
by complex semantics, this metric will surface a subset of
problematic issues related to more general counterfactual
fairness. This a first step, and surfaces additional concerns
for fairness beyond those of group fairness.

Asymmetric Counterfactuals
So far we have assumed that all counterfactuals with re-
spect to identity tokens should have the same prediction.
This assumption is not valid in cases where the sensitive at-
tribute indeed affects the prediction. For instance, consider a
model predicting toxicity of text, and the counterfactual pair
“That’s so gay” and “That’s so straight.” The first example
is arguably more likely to be considered toxic than the sec-
ond, as “gay” is often used as an insult in Internet forums,
while “straight” is not. Other examples include stereotyping,
where one group is more vulnerable than another. Requiring
equal predictions across such cases can inadvertently harm
the more vulnerable group.

Fairness must be required only among counterfactuals
that stipulate symmetric predictions. This restriction can be

accommodated in our framework by restricting the counter-
factual generation function Φ(x) to exclude any counterfac-
tuals for the example x that may have asymmetric labels. In
general, the degree and direction of the asymmetry between
counterfactuals varies based on the task, and the cultural sen-
sitivities of the consumers of the task. This makes it difficult
to define a perfect counterfactual generation function. In Ex-
periments, we propose a heuristic for avoiding asymmetric
counterfactuals for a model predicting toxicity of text.

Relationship to Group Fairness

Counterfactual fairness is complementary to the group fair-
ness notion of equality of odds (Hardt, Price, and Srebro
2016), which demands equality of true positive rates and true
negative rates for different values of the sensitive attribute.
A text classifier may satisfy one while completely failing the
other. Consider the case when two sensitive attributes a and
a′ only appear in disjoint sets of contexts Xa and Xa′ , re-
spectively. A model can satisfy equality of odds by always
predicting correctly on the contexts in which a, a′ appear
in the data, but never in the counterfactual contexts that do
not exist in the data. Conversely, the model could predict
identical output for all counterfactual pairs while predicting
correctly only on Xa and not X ′a.

Methods

We propose three methods to improve counterfactual fair-
ness: blindness, counterfactual augmentation, and counter-
factual logit pairing. Both methods assume access to a list of
identity tokens for which they seek to be fair.

Blindness

Blindness substitutes all identity tokens with a special
IDENTITY token, which allows the predictor to know that
an identity term is present, but not which identity. This is
similar to standard NLP methods such as replacing large
numbers with a generic NUMBER. While this approach guar-
antees counterfactual token fairness, it has a number of
downsides. First, it does not have the ability to differentiate
identity terms, and so necessarily equates asymmetric coun-
terfactuals. Second, it cannot handle complex counterfactu-
als that involve more than single token substitutions, e.g.
“Christians go to church.” and “Jews go to temple.” Finally,
the model may still discriminate using other signals that are
associated with the identity term (Dwork et al. 2011).

Counterfactual Augmentation

Instead of blinding the model to identity terms, counterfac-
tual augmentation involves augmenting the model’s training
set with generated counterfactual examples. The additional
examples are meant to guide the model to become invariant
to perturbing identity terms. This is a standard technique in
computer vision for making the model invariant to object lo-
cation, image orientation, etc. The counterfactual examples
are assigned the same label as the original example.



Counterfactual Logit Pairing (CLP)
Counterfactual logit pairing (CLP) encourages the model to
be robust to identity by adding a robustness term to the train-
ing loss. The robustness term is given by logit pairing (Kan-
nan, Kurakin, and Goodfellow 2018), which penalizes the
norm of the difference in logits for pairs of training examples
and their counterfactuals. Specifically, suppose the classifier
f(x) = σ(g(x)), where g(x) produces a logit and σ(·) is the
sigmoid function. The additional loss is the average absolute
difference in logits between the inputs and their counterfac-
tuals: ∑

x∈X
E

x′∼Unif[Φ(x)]
|g(x)− g(x′)|

For computational tractability, during training, we randomly
sample a single counterfactual example for each input. Tak-
ing J as the original loss function, the overall objective is:∑

x∈X
J(f(x), y) + λ

∑
x∈X

E
x′∼Unif[Φ(x)]

|g(x)− g(x′)|

Similar to counterfactual augmentation, CLP can use any
counterfactual generation function. For example, a restricted
counterfactual generation function could be used to avoid
enforcing equality over asymmetric counterfactuals. More-
over, the method also applies if more sophisticated counter-
factuals are generated.

In contrast to counterfactual augmentation, the robustness
term in the CLP loss explicitly guides the model to satisfy
two desirable properties: (1) ensuring a model produces sim-
ilar outputs on counterfactual pairs and (2) learning models
that generalize well to different identities. Moreover, the pa-
rameter λ can be tuned to achieve varying degrees of coun-
terfactual fairness.

Experiments
Dataset We evaluate our methods on the task of predict-
ing toxicity. For the task, a toxic comment is defined as a
“rude, disrespectful, or unreasonable comment that is likely
to make you leave a discussion.” (Dixon et al. 2018). We
use a public Kaggle dataset of 160K Wikipedia comments,
each labeled by human raters as toxic or non-toxic1, ran-
domly split into train and dev sets. We evaluate AUC of the
primary task on the public test set. We evaluate counterfac-
tual token fairness and group fairness on a private dataset of
comments from another internet forum. This dataset, hence-
forth called the “evaluation dataset,” has a higher occurrence
of identity terms, and therefore leads to a more meaningful
fairness evaluation.

Setup We evaluate our methods for counterfactual token
fairness on the set of 50 identity terms used by Dixon et
al.. Out of these, 47 are single tokens and 3 are bigrams.
We randomly partition the terms into a training set of 35
and a hold-out set of 12 to evaluate generalization. We also
include the three bigrams in evaluation, because they reflect
scenarios that blindness cannot address during training.2

1https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge

2Only single tokens in the input are substituted with bigrams
during evaluation.

All of the models are CNNs trained with cross entropy
loss against the binary toxicity label. All hyperparameters
except for the fairness regularizer λ for CLP were fixed for
all runs of all models. Models were trained for five epochs,
and the best model on the dev set was taken. Each model was
trained ten times, and the average of the runs is reported.
Blindness, Counterfactual augmentation, and CLP models
(for different values of λ) were evaluated and compared to a
baseline model.

For CLP training, we define a different counterfactual ex-
ample generation function than the one used for evaluation.
The evaluation counterfactuals only apply substitutions to a
pair of identity tokens, whereas during training, each sensi-
tive identity token in an input is randomly substituted with
another identity token.

Handling Asymmetric Counterfactuals We hypothesize
that asymmetric counterfactuals are less likely to arise for
ground truth non-toxic comments than toxic comments.
This for two reasons. Asymmetric counterfactuals arise
when stereotyping / attacking a vulnerable group occurs
for some identity substitution, and no other toxicity sig-
nals are present. In such cases, most identity substitutions
will be nontoxic, and only the one attacking the vulnera-
ble group(s) will be toxic. So if the ground truth exam-
ple is nontoxic, counterfactual fairness can still be required
over most identity substitutions, whereas if the ground truth
example is toxic, equal prediction should not be required
over most counterfactuals. Second, the stereotyping com-
ments are more likely to occur in a toxic comment attack-
ing the stereotyped group than in a nontoxic comment ref-
erencing some other identity group. For these reasons, we
evaluate counterfactual token fairness over ground truth non-
toxic comments separately from ground truth toxic com-
ments, and focus our analysis on nontoxic comments. We
also consider applying the CLP loss only to nontoxic com-
ments during training, to avoid enforcing equality of logits
for potentially asymmetric counterfactuals. We distinguish
this variant as CLP nontoxic.

Separately, we also evaluate CTF on simple synthetic
inputs where all information about toxicity is encoded in
the context, and all counterfactuals are symmetric by de-
sign. Specifically, we use a dataset of synthetically gen-
erated sentences based on templates such as “NAME is a
ADJECTIVE.”3

Metrics We measure the counterfactual token fairness gap
with respect to a given counterfactual generation function.
For a single example, this is the average gap in prediction
over all of the counterfactual pairs for that example:

CF GAPΦ(x) = E
x′∼Unif[Φ(x)]

|f(x)− f(x′)|

Over an entire dataset, the gap is the average over all exam-
ples that have valid counterfactuals. In this study, we mea-
sure the CTF GAP for the counterfactual generation func-
tion ΦA, which substitutes all pairs of identity tokens. Be-
cause substitution-based counterfactuals over short inputs

3This is the updated open sourced version of the synthetic test
set presented in (Dixon et al. 2018).



Model Eval NT Synth NT Synth Tox
Baseline 0.140 0.180 0.061
Blind 0.000 0.000 0.000
CF Aug 0.127 0.226 0.022
CLP nontox, λ = 1 0.012 0.015 0.007
CLP, λ = 0.05 0.071 0.082 0.024
CLP, λ = 1 0.007 0.015 0.007
CLP, λ = 5 0.002 0.004 0.004

Table 1: Conterfactual token fairness gaps for non-toxic ex-
amples from evaluation set and all examples from a syn-
thetic test set. All gaps are measure w.r.t. 35 training terms.
Smaller gaps are better.

are more likely to be logical, we evaluate the CTF gaps for
inputs of at most ten tokens in length. In addition, since
asymmetric counterfactuals are likely more common for
toxic comments, we evaluate CTF gaps over nontoxic and
toxic comments separately.

We also measure group fairness to ensure that optimizing
for counterfactual fairness has no perverse impact on it. Fol-
lowing the group fairness notion of equality of odds (Hardt,
Price, and Srebro 2016), we measure the true positive rates
(TPR) and true negatives rates (TNR) of examples referenc-
ing different identity groups. We assume an example refer-
ences a specific identity group based on the presence of the
associated token. Equality of odds requires equal TPR and
TNR across identities, so we evaluate overall TPR and TNR
gaps. The gap for a pair of identity terms is computed as the
absolute value of the difference in rates for the two identity
terms. The overall TPR or TNR gap is the average over all
pairs of identity terms.

Results
Counterfactual Token Fairness Table 1 reports CTF
gaps for non-toxic examples from the evaluation dataset, and
all examples from the synthetic dataset. The gaps are com-
puted for the 35 training terms (discussed in Setup). As dis-
cussed earlier, both these sets of examples are unlikely to
have asymmetric counterfactuals. The baseline model has a
large CTF gap on both sets of examples. Blindness achieves
a zero gap by design. CLP with a fairness regularization
coefficient (λ) of at least 1 also attains a near zero gap.
Counterfactual augmentation decreases the CTF gap (rela-
tive to the baseline) on non-toxic examples from the evalua-
tion dataset, but does not obtain a zero gap. It is worth noting
that the models were not trained on the synthetic dataset, but
we still find a reduction in counterfactual fairness gaps on it.

Table 2 reports CTF gaps on the hold-out terms for non-
toxic examples from the evaluation dataset. We say that a
model’s CTF gap generalizes to hold-out terms if its gap is
less than the baseline model’s gap (0.091). Among the mod-
els compared, CLP with λ = 5 generalizes the best, though
the gaps are much larger that those on the training terms.
Blindness does not appear to provide generalization benefits.
Thus, it may not be a favorable method in settings where we
expect examples with identity terms outside the set of train-
ing terms.

CTF Gap: held-out terms
Baseline 0.091
Blind 0.090
CF Aug 0.087
CLP nontox, λ = 1 0.095
CLP, λ = 0.05 0.078
CLP, λ = 1 0.084
CLP, λ = 5 0.076

Table 2: CTF gaps on held out identity terms for non-toxic
examples from the evaluation set.

To evaluate the impact on cases with asymmetric coun-
terfactuals, we also measured the CTF gap for toxic ex-
amples from the evaluation dataset over the 35 training
terms; see Table 4 in the appendix. The baseline model has
a gap of 0.241, and as expected, blindness has a gap of
zero. All CLP models with λ ≥ 1 achieve a CTF gap of
less than 0.03, which unfortunately means that they end up
equating predictions for asymmetric counterfactuals. This
includes CLP nontoxic, which was trained using counterfac-
tuals from non-toxic examples only. Going forward, we do
not evaluate CLP nontoxic as it is not better than the regular
CLP models.

Overall Performance We evaluate the overall classifier
performance using AUC of the ROC curve. Remarkably, all
methods show consistent AUC on the test set, ranging be-
tween 0.962-0.964.

Figure 1 compares the true positive rate (TPR) and true
negative rate (TNR) of various models, where the threshold
for a toxic classification is set to 0.5. TPR and TNR are mea-
sured only over examples that contain an identity term from
the set of training terms. We find that methods that reduce
the CTF gap perform better at identifying nontoxic com-
ments (true negatives) and worse at identifying toxic com-
ments (true positives). We discuss this tension between im-
proving the CTF gap and TPR in Error Analysis.

Group Fairness We additionally evaluate the group fair-
ness metrics, TPR and TNR gaps for equality of odds (see
Table 3). Counterfactual augmentation and CLP with λ =
0.05 have better TPR and TNR gaps than the baseline and
are able to reduce CTF gaps. CLP with λ ≥ 1 has a more
extreme tradeoff, harming the TPR gap while substantially
improving the TNR gap. Practitioners may choose different
tradeoffs of CTF gap, TPR, and TNR depending on the rel-
ative prioritization of these metrics for a given task.

Error analysis
We examine the trade-off between CTF gap and TPR. We
consider the CLP, λ = 5 model which attains a near zero
CTF gap and compare its predictions on toxic comments to
those of the baseline. Among examples with identity terms
in the test set, there are 83 cases where an example was
correctly classified by the baseline and incorrectly classi-
fied by the CLP model. Of these, 27 were labeled by an au-
thor as having an asymmetric counterfactual. There were 20
cases where the CLP model predicted correctly compared to



Figure 1: Plot of the average CTF gap along with the TPR
and TNR over examples that contain identity terms.

TNR Gap TPR Gap
Baseline 0.084 0.082
Blindness 0.039 0.114
Augmentation 0.065 0.083
CLP all, λ = 0.05 0.058 0.078
CLP all, λ = 1 0.039 0.104
CLP all, λ = 5 0.041 0.112

Table 3: TNR and TPR gaps for different models. Lower is
better.

the baseline, of which none had asymmetric counterfactuals.
This tells us that a large chunk of the TPR loss (relative to
the baseline) is over toxic examples with asymmetric coun-
terfactuals. This is expected as examples with asymmetric
counterfactuals are toxic because of the presence of a spe-
cific identity term, and a model trained to disregard identity
terms will be less likely to predict correctly on such exam-
ples.

As a means of investigating what the CLP model has
learned, we examine its token embeddings after conver-
gence. By the end of training with λ = 5, the average cosine
similarity between pairs of identity tokens is 0.87, whereas
the baseline has an average cosine similarity of 0.25. Al-
though this is similar to blindness, the CLP model learns a
different toxicity association with identity tokens. The aver-
age toxicity prediction on a single identity token for the CLP
model is 0.12, while the toxicity of the IDENTITY token in
the blindness model is 0.54.

Similarly, CLP nontoxic with λ = 5 has a average co-
sine similarity of 0.81. This embedding convergence, despite
CLP being applied only to nontoxic comments, is the reason

why the model achieves a low CTF gap on toxic comments,
including those with asymmetric counterfactuals. Methods
to enforce equal prediction on some subset of counterfactu-
als but not others should be further investigated.

We also qualitatively evaluate the strength of each
model’s association with various identity tokens. Table 5 in
the appendix lists various examples, and the associated tox-
icity scores from each model. In contrast to the baseline,
all three models associate a much smaller amount of toxi-
city signal with the identity tokens. For instance, unlike the
baseline, the other models no longer associate a substantial
amount of toxicity with clearly nontoxic statements such as
“Some people are gay.” Notably, the toxicity of the statement
“Some people are straight” goes up. The negative effect on
this pair is more pronounced for blindness than it is for CLP.

Conclusions and Future Work

We make progress towards counterfactual fairness in text
classification. We propose a specific form of counterfac-
tual fairness, called counterfactual token fairness (CTF),
that requires a model to be robust to different identity to-
kens present in the input. We show that text classification
models with good overall performance fare poorly on this
metric. We approach counterfactual token fairness from a
robustness perspective, and offer a procedure, counterfac-
tual logit pairing, for optimizing the counterfactual token
fairness metric during model training. We find that this ap-
proach performs as well as blindness to identity tokens, but
also generalizes better to hold-out tokens. These results do
not come at the expense of overall classifier accuracy, and
have varying tradeoffs between false positives and false neg-
atives.

Going forward, better heuristics must be designed for
identifying cases with asymmetric counterfactuals. Exclud-
ing toxic comments covers many but not all asymmetric ex-
amples. For example, ground truth nontoxic examples ref-
erencing “black power” are more likely to become toxic
as they reference “white power.” In other text classification
tasks such as sentiment classification, asymmetric counter-
factuals will arise but not necessarily with the same clear
split by label.

A next step would be to improve counterfactual gener-
ation by addressing issues of polysemy of identity terms
(which can result in illogical substitutions), asymmetric
counterfactuals, and multiple references to an identity group.
One possible method is to use analogies in word vectors
to change multiple tokens used for the same identity group
(Madaan et al. 2018). Another approach is defining a gener-
ative model over text, as in (Hu et al. 2017), that can modify
certain attributes of the text while holding others constant
and preserving semantics. One could also use criteria for se-
lecting semantically equivalent adversarial examples as in
(Ribeiro, Singh, and Guestrin 2018), to evaluate whether
counterfactual examples are logical. Optimizing for general
counterfactual fairness will test many of the unique advan-
tages of counterfactual logit pairing.
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Appendix

Train Terms Held-out Terms
Baseline 0.241 0.071
Blind 0.000 0.062
CF Augmentation 0.155 0.057
CLP nontoxic, λ = 1 0.029 0.068
CLP, λ = 0.05 0.165 0.057
CLP, λ = 1 0.010 0.058
CLP, λ = 5 0.004 0.051

Table 4: CTF gaps on toxic examples from the evaluation set, for both training terms and held-out terms.

Baseline Blindness CF Augmentation CLP , λ = 5
Some people are gay 0.98 0.61 0.82 0.14
Some people are straight 0.02 0.61 0.11 0.14
Some people are Jewish 0.28 0.61 0.17 0.13
Some people are Muslim 0.46 0.61 0.24 0.14
Some people are Christian 0.04 0.16 0.02 0.14

Table 5: Counterfactuals and toxicity scores of different models. The tokens “gay,” “straight,” “jewish,” and “muslim” are used
during training, and “christian” was held-out.


