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Abstract

While various traditions under the ‘virtue ethics’ umbrella
have been studied extensively and advocated by ethicists, it
has not been clear that there exists a version of virtue ethics
rigorous enough to be a target for machine ethics (which we
take to include the engineering of an ethical sensibility in a
machine or robot itself, not only the study of ethics in the hu-
mans who might create artificial agents). We begin to address
this by presenting an embryonic formalization of a key part
of any virtue-ethics theory: namely, the learning of virtue by
a focus on exemplars of moral virtue. Our work is based in
part on a computational formal logic previously used to for-
mally model other ethical theories and principles therein, and
to implement these models in artificial agents.

Introduction
What is virtue ethics? One way of summarizing virtue ethics
is to contrast it with the two main families of ethical theo-
ries: deontological ethics (D) and consequentialism (C).
Ethical theories in the family C that are utilitarian in nature
hold that actions are morally evaluated based on their total
utility (or total disutility) to everyone involved. The best ac-
tion is the action that has the highest total utility. In stark
contrast, ethical theories in D emphasize inviolable princi-
ples, and reasoning from those principles to whether actions
are obligatory, permissible, neutral, etc.1 In a departure from
both D and C, ethical theories in the virtue-ethics family V
are overall distinguished by the principle that the best action
in a situation, morally speaking, is the one that a virtuous
person would perform (Annas 2011). A virtuous person is
defined as a person who has learned and internalized a set of
habits or traits termed virtuous. For a virtuous person, vir-
tuous acts become second-nature, and hence are performed
in many different situations, through time.

While there has been extensive formal and rigorous mod-
eling done in D and C, there has been little such work de-
voted to formalizing and mechanizing V . Note that unlike
D and C, it is not entirely straightforward how one could
translate the concepts and principles in V into a form that
is precise enough to be realized in machines. Proponents of
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1Both the families C and D are crisply explained as being in
conformity with what we say here in e.g. (Feldman 1978).

V might claim that it is not feasible to do so given V’s em-
phasis on persons and traits, rather than individual actions or
consequences. From the perspective of machine ethics, this
is not satisfactory. If V is to be on equal footing withD and C
for the purpose of building morally competent machines, AI
researchers need to start formalizing parts of virtue ethics,
and to then implement such formalization in computation.

We present one such formalization herein; one that uses
learning and is based on a virtue-ethics theory presented by
Zagzebski (Zagzebski 2010). The formalization is presented
courtesy of an expressive computational logic that has been
used to model principles in both C and D [e.g. (Govindara-
julu and Bringsjord 2017a; Govindarajulu et al. 2017)].2 The
formalization answers, abstractly, the following two ques-
tions:

Questions

(Q1) When can we say an agent is virtuous?

(Q2) What is a virtue?

The plan for the paper is as follows. First, we briefly look
at why virtuous machines might be useful, and then we
briefly cover related work that can be considered as formal-
izations of virtue ethics. Next, we present an overview of
virtue ethics itself, and specifically show that an emphasis
on moral exemplars makes good sense for any attempt to
engineer a virtuous machine. We next present one version
of virtue ethics, Vz (Zagzebski’s version of virtue ethics),
that we seek to formalize fully. Then, our calculus and the
formalization itself (Vfz ) are presented. We conclude by dis-
cussing future work and remaining challenges.

Why Virtuous Robots?
Note that we do not advocate that machine ethicists pur-
sue virtue ethics over other familiies of ethical theories. Our
goal in the present paper is merely to formalize one version
of virtue ethics within the family V . That said, why might
virtue ethics be considered over consequentialism or deon-
tological ethics for building morally competent machines?
To partially answer this question, we take a short digression
into a a series of conditions laid out by Alfano, and charac-
terized as identifying the core of virtue ethics:

2See (Bringsjord, Arkoudas, and Bello 2006) for an introduc-
tion to the logicist methodology for building ethical machines.



Hard Core of Virtue Ethics (partially quoting (Alfano
2013))

(2) stability If someone possesses a virtue at time t1, then
ceteris paribus she will possess that virtue at a later time
t2.

(3) consistency If someone possesses a virtue sensitive to
reason r, then ceteris paribus she will respond to r in
most contexts.

(7) explanatory power If someone possesses a virtue, then
reference to that virtue will sometimes help to explain
her behavior.

(8) predictive power If someone possesses a high-fidelity
virtue, then reference to that virtue will enable nearly cer-
tain predictions of her behavior; if someone possesses a
low-fidelity virtue, then reference to that virtue will en-
able weak predictions of her behavior.

Particularly, we feel that if the conditions of stability,
consistency, explanatory power, and predictive power
hold, then virtuous agents or robots might be easier for hu-
mans to understand and interact with (compared to conse-
quentialist or deontological agents or robots). This is but
our initial motivation; we now present an overview of virtue
ethics, in order to show that our focus specifically on learn-
ing of virtuous behavior from moral exemplars is advisable.

Surveying Virtue Ethics
See (Scheutz and Malle forthcoming) for a general intro-
duction to the field of moral robots. We begin our survey
by reporting that Hurka (Hurka 2000) presents an ingenious
formal account involving a recursive notion of goodness
and badness. The account starts with a given set of primi-
tive good and bad states-of-affairs. Virtues are then defined
as love of good states-of-affairs or hatred of bad states-of-
affairs. Vice is defined as love of bad states-of-affairs or
hatred of good states-of-affairs. Virtues and vices are then
themselves taken to be good and bad states-of-affairs, re-
sulting in a recursive definition (see Figure 2) that is at-
tractive to AI researchers and computer scientists. But de-
spite this, and despite our sense that the main problems
with Hurka’s account are rectifiable (Hiller 2011), we feel
that Hurka’s definition might not capture central aspects of
virtue (Miles 2013). More problematic is that it must be
shown that Hurka’s account is different from rigorous and
formal accounts of C, which after all are themselves invari-
ably based upon good and bad states-of-affairs. Moreover,
it is not clear to us how Hurka’s account is amenable to au-
tomation. Therefore, we now proceed to step back and sur-
vey the overarching family V of virtue ethics, to specifically
pave a more promising AI road: a focus on moral exemplars.

Virtue Ethics: Overview to Exemplarism
The core concepts of consequentialist ethical theories (i.e. of
members of C), at least certainly in the particular such the-
ory known as utilitarianism, are doubtless at minimum rela-
tively familiar to most of our readers. For instance, most in
our audience will know that utilitarianism’s core tenet is that
actions are obligatory just in case they have the consequence

Proposed Recursive 
Clarification by Hurka
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• Seems reducible to consequentialism
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Figure 1: Hurka’s Account Virtues (vices) are defined re-
cursively as love of good (bad) states-of-affairs or hate (love)
of bad states of affairs.

of maximizing happiness, and are forbidden exactly when
they fail to so maximize. A parallel state-of-affairs holds
for at least basic knowledge of deontological ethical theo-
ries (= family D): most readers have for instance some fa-
miliarity with Kant’s moral system in family D, and specifi-
cally with his famous “categorical imperative,” which, para-
phrasing, says that, unconditionally, one must always act in
such a way that this behavior could be universalized.3 In ad-
dition, generally people are familiar with the core tenet of
divine-command ethical theories (i.e. of members of DC),
which is (approximately) that actions are obligatory for hu-
mans if and only if God commands that these actions be
performed (a particular member of Dis specified in (Quinn
1978)). However, in our experience the epistemic situation
is radically different when it comes to the family of ethical
theories virtue ethics (= V). For while it’s true that gener-
ally educated people can be assumed to be acquainted with
the concept of virtue, and with many things long deemed to
be virtues (e.g. bravery), an understanding of virtue ethics
at the level of ethical theory cannot be assumed. We there-
fore now provide a rapid (and admittedly cursory) synopsis
of V , by drawing from (Vallor 2016), and to some degree
from (Annas 2011). It will be seen that V makes central use
of exemplars, and of learning and development that revolves
around them. Hence we shall arrive at a convenient entry
point for our AI work devoted to trying to design and build
a virtuous machine.

Obviously we cannot in the span of the space we have at
hand do full justice to the book-length treatment of V that is
(Vallor 2016). But we can quickly establish that our techni-
cal work, in its focus on the cultivation of virtue for a ma-
chine via learning from exemplars, is not merely based on
a single, idiosyncratic member of V , and on one peripheral
aspect of this member. On the contrary, study of the work of
Vallor and other scholars concerned with a characterization
of the family V confirms that our exploitation specifically

3This imperative is first set out in — as it’s known in abbrevi-
ation — Groundwork; see (Kant 19971785). It’s generally thought
by ethicists, and this may be convenient for machine/AI ethics, that
Kant had in mind essentially a decision procedure to follow in the
attempt to behave in an ethically correct manner. For a lucid and
laconic overview of this point, see (Johnson 20042016); and cf.
(Powers 2006).



of Zagzebski’s (Zagzebski 2010) focus, from the standpoint
of the field of ethics itself, is a worthy point of entry for AI
researchers.

To begin, Vallor, drawing on and slightly adapting Van
Norden’s (Van Norden 2007) sets out a quartet of common-
alities that at least seem to be true of all members of V , and
the second one is: “A conception of moral virtues as cul-
tivated states of character, manifested by those exemplary
persons who have come closest to achieving the highest hu-
man good” (¶5, §2.2).4 But given our specific efforts toward
engineering a virtuous machine, it is important to note that
Vallor specifically informs us about the key concepts of ex-
emplars in the particular members of the Vfamily; to pick
just one of many available places, she writes:

Buddhism’s resonances with other classical virtue traditions
do not end here. As with the central role granted by Confu-
cian and Aristotelian ethics to ‘exemplary persons’ (the junzi
and phronimoi respectively), bodhisattvas (persons actively
seeking enlightenment) generally receive direction to or as-
sistance on the path of self-cultivation from the community
of exemplary persons to which they have access. In Bud-
dhism this is the monastic community and lay members of
the Sangha . . . [¶5, §2.1.3, (Vallor 2016)]

We said above that we would also draw, albeit briefly,
from a second treatment of V , viz. (Annas 2011), in order
to pave the way into our AI-specific, exemplar-based tech-
nical work. About this second treatment we report only that
it is one based squarely on a “range of development” (¶3,
§Right Action in Ch. 3), where the agent (a human in her
case) gradually develops into a truly virtuous person, begin-
ning with unreflective adoption of direct instruction, through
a final phase in which “actions are based on understanding
gained through experience and reflection” (ibid.). Moreover,
Annas explicitly welcomes the analogy between an agent’s
becoming virtuous, and an agent’s becoming, say, an excel-
lent tennis-player or pianist. The idea behind the similarity
is that “two things are united: the need to learn and the drive
to aspire (emphasis hers; ¶4 Ch. 3). In addition, following
Aristotle on V (e.g. see (Aristotle 2000) 1103), no one can
become a master tennis-player or pianist without, specifi-
cally, playing tennis/the piano with an eye to the mastery of
great exemplars in these two domains.

In order to now turn to specific AI work devoted to en-
gineering a virtuous machine, we move from completed
consideration of the general foundation of V , and its now-
confirmed essential use of moral exemplars, to a specific use
of such exemplars that appears ripe for mechanization.

Exemplarist Virtue Theory
Exemplarist virtue theory (Vz) builds on the direct refer-
ence theory (DRT) of semantics. Briefly, in DRT, given a
word or term w, its meaning µ(w) is determined by what

4In her book, Vallor gives her own more detailed and techno-
logically relevant list of seven core elements that can be viewed as
common to all members of V (or two what she refers to as “tradi-
tions” within virtue ethics). We do not have the space to discuss this
list, and show that it fits nicely with our technical work’s emphasis
on exemplars and learning therefrom.

the word points out, say p, and not by some definition d. For
example, for a person to use the word “water,” in a correct
manner, that person neither needs to possess a definition of
water nor needs to understand all the physical properties of
water. The person simply needs to know which entity the
word “water” picks out in common usage.

In Vz , persons understand moral terms, such as “hon-
esty,”, in a similar manner. That is, moral terms are under-
stood by persons through direct references instantiated in
exemplars. Persons identify moral examplars through the
emotion of admiration. The emotions of admiration and
contempt play a foundational role in this theory. Vz posits
a process very similar to scientific or empirical investiga-
tion. Exemplars are first identified and their traits are stud-
ied; then they are continously further studied to better under-
stand their traits, qualities, etc. The status of an individual as
an exemplar can change over time. Below is an informal ver-
sion that we seek to formalize:

Informal Version Vz

I1 Agent or person a perceives a person b perform an action
α. This observation causes the emotion of admiration in a.

I2 a then studies b and seeks to learn what traits
(habits/dispositions) b has.

The Goal
From the above presentation of Vz , we can glean the fol-
lowing distilled requirements that should be present in any
formalization.

Vf
z Formalization Components

(R1) A formalization of emotions, particularly admiration.

(R2) A representation of traits.

(R3) A process of learning traits (and not just simple indi-
vidual actions) from a small number of observations.

Building the Formalization
For fleshing out the above requirements and formalizing Vz ,
we will use the deontic cognitive event calculus (DCEC), a
computational formal logic. This logic was used previously
in (Govindarajulu and Bringsjord 2017a; Govindarajulu et
al. 2017) to automate versions of the Doctrine of Double
Effect (DDE), an ethical principle with deontological and
consequentialist components. DCEC has also been used to
formalize akrasia (the process of succumbing to temptation
to violate moral principles) (Bringsjord et al. 2014). Frag-
ments of DCEC have been used to model highly intensional
reasoning processes, such as the false-belief task (Arkoudas
and Bringsjord 2008).5

5DCEC is both intensional and intentional. There is a differ-
ence between intensional and intentional systems. Broadly speak-
ing, extensional systems are formal systems in which the references
and meanings of terms are independent of any context. Intensional
systems are formal systems in which meanings of terms are depen-
dent on context, such as the cognitive states of agents, time, etc.
Modal logics used for modeling beliefs, desires, and intentions are
considered intensional systems. Please see the appendix in (Govin-
darajulu and Bringsjord 2017a) for a more detailed discussion.



Overview of DCEC

DCEC is a quantified multi-operator6 modal logic (also
known as sorted first-order multi-operator modal logic) that
includes the event calculus, a first-order calculus used for
commonsense reasoning over time and change (Mueller
2014). This calculus has a well-defined syntax and proof
calculus; see Appendix A of (Govindarajulu and Bringsjord
2017a). The proof calculus is based on natural deduction
(Gentzen 1935), and includes all the introduction and
elimination rules for first-order logic, as well as inference
schemata for the modal operators and related structures. As
a sorted calculus, DCEC can be regarded analogous to a
typed programming language. We show below some of the
important sorts used in DCEC. Among these, the Agent,
Action, and ActionType sorts are not native to the event
calculus.

Sort Description

Agent Human and non-human actors.
Time The Time type stands for time in the domain;
Event Used for events in the domain.
ActionType Abstract actions instantiated at particular times by actors.
Action Events that occur as actions by agents.
Fluent representing states of the world

Note: actions are events that are carried out by an agent.
For any action type α and agent a, the event corresponding
to a carrying out α is given by action(a, α). For instance, if
α is “running” and a is “Jack” , action(a, α) denotes “Jack
is running”.

Syntax The syntax has two components: a first-order core
and a modal system that builds upon this core. The figures
below show the formal language and inference schemata of
DCEC. Commonly used function and relation symbols of
the event calculus are included. Any formally defined calculi
(e.g. the venerable situation calculus) for modeling com-
monsense and physical reasoning can be easily switched out
in-place of the event calculus.

The modal operators present in the calculus include
the standard operators for knowledge K, belief B, desire
D, intention I, obligation O etc. For example, consider
B (a, t, φ), which says that agent a believes at time t the
proposition φ. Here φ can in turn be any arbitrary formula.

6The full catalogue of available operators exceeds those for be-
lief, desire, and intention, and a fortiori exceeds the available op-
erators in any standard modal logic designed to formalize e.g. only
either alethic, epistemic, or deontic phenomena.

Syntax (fragment)

S ::= Agent | ActionType | Action v Event | Moment | Fluent

f ::=


action : Agent× ActionType→ Action

holds : Fluent× Moment→ Formula

happens : Event× Moment→ Formula

t ::= x : S | c : S | f(t1, . . . , tn)

φ ::=



q : Formula | ¬φ | φ ∧ ψ | φ ∨ ψ | ∀x : φ(x) |

P(a, t, φ) |K(a, t, φ) |

C(t, φ) | S(a, b, t, φ) | S(a, t, φ) |B(a, t, φ)

O(a, t, φ, (¬)happens(action(a
∗
, α), t

′
))

Inference Schemata The figure below shows a fragment
of inference schemata for DCEC. IB is an inference schema
that let us model idealized agents that have their knowledge
and belief closed under the DCEC proof theory. While nor-
mal humans are not deductively closed, this lets us model
more closely how deliberative agents such as organizations
and more strategic actors reason. (Some dialects of cognitive
calculi restrict the number of iterations on intensional oper-
ators.) I12 states that if an agent s communicates a propo-
sition φ to h, then h believes that s believes φ. I14 dictates
how obligations propagate to intentions.

Inference Schemata (fragment)

B(a, t1,Γ), Γ ` φ, t1 < t2

B(a, t2, φ)
[IB]

S(s, h, t, φ)

B(h, t,B(s, t, φ))
[I12]

B(a, t, φ) B(a, t,O(a, t, φ, χ)) O(a, t, φ, χ)

K(a, t, I(a, t, χ))
[I14]

We also define the following inference-schemata-based
relationships between expressions in our calculus.
Generalization of Formulae. The generalization of a set of
formulae Ψ, is a set of formulae Φ from which any element
of Ψ can be inferred: Φ `

∧
Ψ. This is denoted by g(Ψ) =

Φ.
Generalization of Terms: A term x is a generalization of
a term y if given any first-order predicate P , from P (x) we
can derive P (y): {P (x)} ` P (y). This is denoted by g(y) =
x.

Semantics
DCEC uses proof-theoretic semantics (Gentzen 1935;
Francez and Dyckhoff 2010), an approach commonly asso-
ciated with natural deduction inference systems. Briefly, in
this approach, meanings of modal operators are defined via
functions over proofs. Specifying semantics then reduces to
specifying inference schemata.

Events, Fluents, and Utilities
In the event calculus, fluents represent states of the world.
Our formalization of admiration requires a notion of utility
for states of the world. Therefore, we assign utilities to flu-
ents through a utility function: µ : Fluent × Time → R.
An event can initiate one or more fluents. Therefore, events
can also have a utility associated with them. For an event e
at time t, let etI be the set of fluents initiated by the event,



and let etT be the set of fluents terminated by the event. If we
are looking up till horizon H , then ν(e, t), the total utility of
event e at time t, is:

ν(e, t) =

H∑
y=t+1

( ∑
f∈et

I

µ(f, y)−
∑
f∈et

T

µ(f, y)

)

With the calculus given above, we now move on to spec-
ifying parts of the formalization Vfz , that is, R1, R2, and
R3.

Defining Admiration
We start with R1 and formalize admiration in DCEC. To
acheive this, we build upon the OCC model. There are many
models of emotion from psychology and cognitive science.
Among these, the OCC model (Ortony, Collins, and Clore
1988) has found wide adoption among computer scientists.
Note that the model presented by (Ortony, Collins, and Clore
1988) is informal in nature and one formalization of the
model has been presented in (Adam, Herzig, and Longin
2009). This formalization is based on propositional modal
logic, and while comprehensive and elaborate, is not expres-
sive enough for our modelling, which requires at the least
quantification over objects.

In OCC, emotions are short-lived entities that arise in
response to events. Different emotions arise based on:
(i) whether the consequences to events are positive (desir-
able) or negative (undesirable); (ii) whether the event has
occured; and (iii) whether the event has consequences for
the agent or for another agent. OCC assumes an undefined
primitive notion of an agent being pleased or displeased in
response to an event. We represent this notion by a predi-
cate Θ in our formalization. In OCC, admiration is defined
as “(approving of) someone else’s praiseworthy action.” We
translate this definition into DCEC as follows. An agent a
is said to admire another agent b’s action α, if agent a be-
lieves the action is a good action. An action action(b, α)
is a considered a good action if ν(action(b, α), t) > 0. In
OCC, agents can admire only other agents and not them-
selves. This is captured by the inequality a¬ = b

(R1) Admiration in DCEC

holds(admires(a, b, α), t)

↔
Θ(a, t′) ∧

B

a, t,


(a 6= b) ∧ (t′ < t)

∧ happens(action(b, α), t′)∧

ν(action(b, α), t) > 0





Defining Traits
To satisfy R2, we need to define traits. We define a situa-
tion σ(t) as simply a collection of formulae that describe
what fluents hold at a time t, along with other event-calculus
constraints and descriptions (sometimes we use σ(t) to rep-
resent the conjunction of all the formulae in σ(t).)

(R2) Trait

An agent a has a situation σ and action type α as an m-trait
〈σ, α〉 if there are at least m situations {σ1, σ2, . . . , σm} in
which instantiations of α are performed, and σ is the gener-
alization of the situations.

A trait 〈σ, α〉 can be represented as single formula:

τ ≡ σ ∧ happens(action(α, a), t)

We introduce a new modal operator Trait that can then
be applied to the collection of formulae τ denoting a trait.
Trait(τ, a) says that agent a has trait τ . The following in-
ference schema then applies to Trait:

(R2) Inference Schema for Trait{
σi, happens(action(αi, a), ti)

g
(
σi(t)

)
= σ, g(αi) = α

}n

i=1

Trait(τ, a)
[ITrait]

Defining Learning of Traits
To address R3 we need a definition of what it means for an
agent to learn a trait. We start with a learning agent l. An
agent e is identified as an exemplar by l iff the emotion of
admiration is triggered n times or more by e in l. This is
written down in DCEC as follows (note that admiration can
be triggered by different actions):

Exemplar Defninition

Exemplar(e, l)↔ ∃!nt.∃α.holds(admires(l, e, α), t)

Once e is identified as an exemplar, the learner then iden-
tifies one or more traits of e by observing e over an extended
period of time. Let l believe that e has a trait τ ; then l incor-
porates τ as its own trait:

(R3) Learning a Trait

LearnTrait(l, τ, t)↔ ∃e

Exemplar(e, l)∧

B
(
l, t,Trait

(
τ, e
))


LearnTrait(l, 〈σ, α〉, t)→
(
σ → happens(action(l, α), t)

)
Example For instance, if the action type “being truthful”
is triggered in situations: “talking with alice,”, “talking with
bob”, “talking with charlie”; then the trait learned is that
“talking with an agent” situation should trigger the “being
truthful” action type.

A Note on Learning Methods
When we look at humans learning virtues by observing oth-
ers or by reading from texts or other sources, it is not en-
tirely clear how models of learning that have been success-
ful in perception and language processing (e.g. the recent
successes of deep learning and statistical learning) can be
applied. Learning in V-relevant situations is from one or
few instances or in some cases through instruction, and such



learning may not be readily amenable to models of learning
which require a large number of examples.

The abstract learning method that we will use is general-
ization, defined previously. See one simple example imme-
diately below:

Example 1

Γ1 = {talkingWith(jack)→ Honesty}
Γ2 = {talkingWith(jill)→ Honesty}

generalization Γ = {∀x.talkingWith(x)→ Honesty}

One particularly efficient and well-studied mechanism to
realize generalization is anti-unification, which has been
applied successfully in learning programs from few exam-
ples.7 In anti-unification, we are given a set of expressions
{f1, . . . , fn} and need to compute an expression g that when
substituted with an appropriate term θi gives us fi. For ex-
ample, if we are given hungry(jack) and hungry(jill), the
anti-unification of those terms would be hungry(x ).

In higher-order anti-unification, we can substitute func-
tion symbols and predicate symbols. Here P is a higher-
order variable.

Example2

likes(jill , jack)

likes(jill , jim)

likes(jill , x )

Example3

likes(jill , jack)

loves(jill , jim)

P(jill , x )

Defining Virtuous Person and Virtues
With the formal machinery in place we finally present for-
malizations that answer Q1 and Q2 posed at the outset. An
n-virtuous person or agent s is an agent that is considered as
an exemplar by n agents:

(Q1) Virtuous Person

Vn(s)↔ ∃≥na : Exemplar(s, a)

An n-virtue is a trait possesed by at least n virtuous
agents:

(Q2) Virtue

Gn(τ)↔ ∃≥na : Trait(τ, a)

Implementation & Simulation
We have extended ShadowProver, a quantified modal logic
prover for DCEC used in (Govindarajulu and Bringsjord
2017a) to handle the new inference schemata and defini-
tional axioms given above. We now show a small simulation
in which an agent learns a trait and uses that trait to perform
an action. Assume that we have a marketplace where things
that are either old or new can be bought and sold. A seller

7This discipline, known as inductive programming, seeks to
build precise computer programs from examples (Nienhuys-Cheng
and De Wolf 1997). See (Muggleton et al. 2018) for an application
in generating human comprehensible programs.

can either honestly state the condition of an item {new , old}
or falsely report the state of the item. Agent a has two items
x and y. x is new and y is old. a is asked about the state
of the items, and a responds accurately. We have an agent d
that observes agent a correctly report the state of the items.
d also has beliefs about a’s state of mind. We also have that
the agent d considers a to be an exemplar. When all this in-
formation is fed into the prover along with the definitions
above, d learns a trait representing a form of honesty, shown
below: 〈

B(d, t, holds(x, t) ∧ ν(utter(x), t) > 0),

utter(x)

〉
When d is queried about the state of an item u, d responds

accurately (input and output shown in Figure 2). The prover
responds with the required output in 3.6 seconds.8

{:name        "Virtue learning simulation from the point of Agent D" 

 :assumptions { ;; A's state of mind. 
                P1 (Believes! I now (and (Knows! a t1 (holds (state x new) t1)) 
                                         (Knows! a t2 (holds (state y old) t2)))) 
               ;; D observes a's utterances 
                P2 (Perceives! a t1 (happens (action a (utters (state x new))) (next t1))) 
                P3 (Perceives! a t2 (happens (action a (utters (state y old))) (next t2))) 
                Background (Believes! I t0 (holds (state u old) now)) 
                Admire (Exemplar a d)} 

 :conclusion  (happens (action d (utters  (state  u old))) (next now))} 

https://github.com/naveensundarg/prover/releases/tag/virtue-learning-demo 

Figure 2: Simulation Input and Output Formulae

Conclusion & Future Work
We have presented an initial formalization Vfz of a virtue
ethics theory Vz in a calculus that has been used in automat-
ing other ethical principles in deontological and consequen-
tialist ethics. Many important questions have to be addressed
in future research. Among them are questions about the na-
ture and source of the utility functions that are used in the
definitions of emotions. Lacking in our above model is an
account of uncertainties and how they interact with virtues.
We plan to leverage an account of uncertainty for a frag-
ment of DCEC presented in (Govindarajulu and Bringsjord
2017b). In future work, we will compare learning traits with
work on learning norms (Sarathy, Scheutz, and Malle 2017).
The notion of learning we have presented here is quite ab-
stract. In order to handle more complex traits, more sophis-
ticated learning frameworks may have to be considered. Fi-
nally, we need to apply this model to more realistic exam-
ples and case studies, and implement our theories in realistic
robotics architectures (Sarathy et al. 2016). The way forward
to the production of virtuous machines is thus challenging,
but we are confident that the foundation is now in place for
their eventual arrival.
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