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Abstract
Computer-aided decision making—where a human decision-
maker is aided by a computational classifier in making a
decision—is becoming increasingly prevalent. For instance,
judges in at least nine states make use of algorithmic tools
meant to determine “recidivism risk scores” for criminal de-
fendants in sentencing, parole, or bail decisions. A subject
of much recent debate is whether such algorithmic tools are
“fair” in the sense that they do not discriminate against certain
groups (e.g., races) of people.
Our main result shows that for “non-trivial” computer-aided
decision making, either the classifier must be discriminatory,
or a rational decision-maker using the output of the classifier
is forced to be discriminatory. We further provide a complete
characterization of situations where fair computer-aided de-
cision making is possible.

As more and more data is becoming easily available, and
with vast increases in the power of machine learning, there
are an increasing number of situations where algorithms—
classifiers—are used to help decision makers in challeng-
ing situations. Examples range from algorithms assisting
drivers in cars, to algorithmic methods for determining
credit scores, to algorithms helping judges to make sentenc-
ing and pretrial decisions in criminal justice. While such
computer-aided decision making has presented unparalleled
levels of accuracy and is becoming increasingly ubiquitous,
one of the primary concerns with its widespread adoption
is the possibility for such algorithmic methods to lead to
structural biases and discriminatory practices (Podesta et al.
2014). A malicious algorithm designer, for instance, might
explicitly encode discriminatory rules into a classifier. Per-
haps even more problematically, a machine learning method
may overfit the data and infer a bias, may inherit a bias from
poorly collected data, or may simply be designed to optimize
some loss function that leads to discriminatory outcomes.

A well-known instance where this concern has come to
light is the debate surrounding the COMPAS (Correctional
Offender Management Profiling for Alternative Sanctions)
tool for recidivism analysis, a classification algorithm that
is becoming increasingly widely used in the criminal justice
system. Given a series of answers to questions concerning
criminal defendants’ backgrounds and characteristics, this
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tool outputs scores from 1 (low risk) to 10 (high risk) es-
timating how likely they are to recidivate (commit a future
crime) or to recidivate violently. According to a recent study
by ProPublica (Angwin et al. 2016b), COMPAS and sim-
ilar risk assessment algorithms are becoming increasingly
widely-used throughout the United States; their results are
already being shown to judges in nine states during crimi-
nal sentencing, and are used in courts nationwide for pre-
trial decisions such as assigning bail. The ProPublica study,
however, found an alarming trend in a set of data collected
(Angwin et al. 2016a) concerning individuals’ COMPAS re-
sults and their actual rates of recidivism over the next two
years; in particular, it was found that the scores output by
COMPAS lead to a disparate treatment of minorities. For in-
stance, in the data collected, African-American defendants
who did not recidivate were found to be almost twice as
likely as white defendants (44.85%, compared to 23.45%)
to have been assigned a high risk score (5-10).

Fairness, or non-discrimination, in classification has been
studied and debated extensively in the recent past (see (Baro-
cas and Selbst 2016) for an extremely thorough overview);
research concerning definitions of fairness in classification
dates back to (Pearl 2001) and (Dwork et al. 2012), with
more recent definitions tailored to deal with the above-
mentioned problems appearing in (Angwin et al. 2016b;
Hardt, Price, and Srebro 2016; Chouldechova 2017; Klein-
berg, Mullainathan, and Raghavan 2017). To make this
setting more concrete, consider some distribution D from
which individuals σ are sampled, and consider some classi-
fier C(·) that given some observable features O(σ) produces
some outcome, which later will be used by a decision-maker
(DM). The DM is ultimately only interested in the actual
class f(σ) ∈ Ψ of the individual σ, and their goal is to out-
put some decision x ∈ ΩDM correlated with this actual class.
For instance, in the setting of the COMPAS data collected
in (Angwin et al. 2016b; 2016a), D is the distribution over
defendants σ, the class f(σ) is a bit indicating whether the
defendant σ actually commits a crime in the next two years,
and the job of the classifier is to output a risk score, which
will then be seen and acted upon by a judge. Note that we
may without loss of generality assume that the class of the
individual is fully determined by σ—situations where the
class is probabilistically decided (e.g., at the time of classi-
fication, it has yet to be determined whether an individual



will or won’t recidivate) can be captured by simply includ-
ing these future coin-tosses needed to determine it into σ,
and simply making sure they are not part of the observable
features O(σ).

Additionally, an individual σ is part of some group
g(σ) ∈ G—for instance, in the COMPAS setting, the group
is the race of the individual. We will refer to the tuple
P = (D, f, g, O) as a classification context. Given such
a classification context P , we let ΨP denote the range of f ,
and GP denote the range of g. Whenever the classification
context P is clear from context, we drop the subscript; addi-
tionally, whenever the distribution D, g are clear from con-
text, we use σ to denote a random variable that is distributed
according to D, and σX to denote the random variable dis-
tributed according to D conditioned on g(σ) = X .

In this work, we will explore a tension between fairness
for the classifier and fairness for the DM. Roughly speaking,
our main result shows that except in “trivial” classification
contexts, either the classifier needs to be discriminatory, or
a rational decision-maker using the output of the classifier is
forced to be discriminatory. Let us turn to describing these
two different perspectives on fairness.

Fairness for the Classifier: Fair Treatment The notion
of statistical parity (Dwork et al. 2012) (which is essen-
tially identical to the notion of causal effect (Pearl 2001))
captures non-discrimination between groups by simply re-
quiring that the output of the classifier be independent (or
almost independent) of the group of the individual; that is,
for any two groups X and Y , the distributions {C(O(σX))}
and {C(O(σY ))} are ε-close in statistical distance. This is a
very strong notion of fairness, and in the above-mentioned
context it may not make sense. In particular, if the base
rates (i.e. the probabilities that individuals from different
groups are part of a certain class) are different, we should
perhaps not expect the output distribution of the classifier to
be the same across groups. Indeed, as the ProPublica article
points out, in the COMPAS example, the overall recidivism
probability among African-American defendants was 56%,
whereas it was 42% among white defendants. Thus, in such
situations, one would reasonably expect a classifier to on av-
erage output a higher risk score for African-American de-
fendants, which would violate statistical parity. Indeed, the
issue raised by ProPublica authors was that, even after taking
this base difference into account (more precisely, even af-
ter conditioning on individuals that did not recidivate), there
was a significant difference in how the classifier treated the
two races.

The notion of equalized odds in (Hardt, Price, and Sre-
bro 2016) formalizes the desiderata articulated by the au-
thors of the ProPublica study (for the case of recidivism) in
a general setting by requiring the output of the classifier to
be independent of the group of the individuals, after condi-
tioning on the class of the individuals.1 We here consider an
approximate version of this notion—which we refer to as ε-

1Very similar notions of fairness appear also in (Chouldechova
2017; Kleinberg, Mullainathan, and Raghavan 2017) using differ-
ent names.

fair treatment—which requires that, for any two groups X
and Y and any class c, the distributions
• {C(O(σX)) | f(σX) = c}
• {C(O(σY )) | f(σY ) = c}
are ε-close with respect to some appropriate distance metric
to be defined shortly. That is, in the COMPAS example, if
we restrict to individuals that actually do not recidivate (re-
spectively, those that do), the output of the classifier ought
to be essentially independent of the group of the individual
(just as intuitively desired by the authors of the ProPublica
study, and as explictly put forward in (Hardt, Price, and Sre-
bro 2016)).

We will use the notion of max-divergence to determine the
“distance” between distributions; this notion, often found in
areas such as differential privacy (see (Dwork 2006)), repre-
sents this distance as (the logarithm of) the maximum mul-
tiplicative gap between the probabilities of some element
in the respective distributions. We argue that using such a
multiplicative distance is important to ensure fairness be-
tween groups or outcomes that may be under-represented in
the data.2 Furthermore, as can be seen in (Morgan and Pass
2018), such a notion is closed under “post-processing”: if a
classifier C satisfies ε-fair treatment with respect to a con-
text P = (D, f, g, O), then for any (possibly probabilistic)
functionM, C′(·) = M(C(·)) will also satisfy ε-fair treat-
ment with respect toP . Closure under post-processing is im-
portant as we ultimately want the decision-maker to act on
the output of the classifier, and we would like the decision-
maker’s output to be fair whenever they act only on the clas-
sifier’s output.3

As shown in the ProPublica study, the COMPAS clas-
sifier does not satisfy ε-fair treatment even for somewhat
large ε. However, several recent works have presented meth-
ods to “sanitize” unfair classifiers into ones satisfying ε-
fair treatment with only a relatively small loss in accu-
racy (Hardt, Price, and Srebro 2016; Zafar et al. 2017;
Morgan and Pass 2018).

Fairness for the Decision-Maker: Rational Fairness.
So, classifiers satisfying ε-fair treatment with accuracy
closely matching the optimal “unfair” classifiers are possi-
ble (in fact, classifiers such as COMPAS can be sanitized
to satisfy ε-fair treatment, without losing too much in accu-
racy). Additionally, as we have noted, the notion of fair treat-
ment is closed under post-processing, so any mechanism
that is applied to the output of the classifier will preserve
fair treatment. Thus, intuitively, we would hope that the en-
tire “computer-aided decision making process”, where the

2For instance, a blatantly discriminatory classifier that posi-
tively classified 1% of a group at random, but only that group,
would have a fair treatment error of 0.01 if we used standard statis-
tical distance, but an infinite max-divergence error.

3An earlier approximate definition was proposed in (Kleinberg,
Mullainathan, and Raghavan 2017), which simply required that the
expectations of the distributions are close; while this is equivalent
to our definition for the case of binary outcomes, it is weaker for
non-binary outcomes (as in the case of the COMPAS classifier),
and this notion is not closed under post-processing.



decision-maker makes use of the classifier’s output to make
a decision, results in a fair outcome as long as the classifier
satisfies fair treatment. Indeed, if the decision-maker sim-
ply observes the outcome of the classifier and bases their
decision entirely on this outcome, this will be the case (by
closure under post-processing).

But the decision-maker is not a machine; rather we ought
to think of the DM as a rational agent, whose goal is to make
decisions that maximize some internal utility function. (For
instance, in the context of COMPAS, the DM might be a
judge that wants to make sure that defendants that are likely
to recidivate are sent to jail, and those who do not are re-
leased). As far as we are aware, such a computer-aided “ra-
tional” decision-making scenario has not yet been studied.

More precisely, we consider a decision-theoretic scenario
where individuals σ are sampled fromD, the decision-maker
gets to see the group g(σ) of the individual and the outcome
c = C(σ) of the classifier (e.g., the individual’s race and risk
score), selects some action x ∈ ΩDM (e.g., what sentence to
render), and finally receives some utility u(f(σ), x) that is
only a function of the actual class f(σ) (e.g., whether the
individual would have recidivated) and their decision x.

Given a classification context P , a classifier C, action
space ΩDM and a utility function u, let ΓP,C,ΩDM,u denote
the decision problem (i.e., the single-player Bayesian game)
induced by the above process. We argue that in a computer-
aided decision-making scenario, a natural fairness desider-
atum for a classifier C for a context P is that it should
“enable fair rational decision-making”. More precisely, we
say that a strategy s : GP × {0, 1}∗ → ΩDM for the DM
(which chooses an outcome based on the group of the in-
dividual and the output of the classifier) is fair if the DM
ignores the individual’s group g and only bases its decision
on the output of the classifier—that is, there exists some
s′ : {0, 1}∗ → ΩDM such that s(g, o) = s′(o). We next say
that C enables ε-approximately fair decision making (or
simply satisfies ε-rational fairness) with respect to the con-
text P = (D, f, g, O) if, for every finite action space ΩDM
and every utility function u : Ψ × ΩDM → [0, 1] (i.e., de-
pending on the individual’s class and the action selected by
the DM), there exists an ε-optimal and fair strategy s (i.e.,
a strategy s such that the DM cannot gain more than ε in
utility by deviating from it) in the induced game ΓP,C,ΩDM,u.

Note that if there exists ΩDM, u for which there does not
exist some fair ε-optimal strategy in the induced game, then
there exist situations in which a DM can gain more than ε in
utility by discriminating between groups, and thus in such
situations a rational DM (that cares about “significant” > ε
changes in utility) would be forced to do so.

Our Main Theorem
Our main result shows that the above-mentioned notions
of fairness—which both seem intuitively desirable—are
largely incompatible, except in “trivial” cases. In fact, we
provide a tight characterization of classification contexts that
admit classifiers satisfying ε-fair treatment and ε-rational
fairness.

In these “trivial” cases—for instance, when the features
already enable perfect classification, or when the base rates

of classes are equal between groups—constructing a fair
classifier is possible (and, indeed, usually trivially so) with-
out any significant tradeoffs. However, in non-trivial cases,
when these base rates might vary significantly, we show that
enforcing fairness will inevitably produce a “predictive dis-
parity” between groups, in that the ability of the outcome of
a classifier to predict an individual’s true class will need to
be sacrificed more in some groups than in others. And, intu-
itively, this predictive disparity is precisely what causes ra-
tional fairness to fail; we show constructively that there are
cases where a rational DM will be incentivized to make a
more “risky” decision given a group with better predictivity
and a “safer” decision given a group with worse predictivity.

The case of binary classes (warm-up). As a warm-up,
and to better compare our result to earlier literature, let us
start by explaining our characterization for the case of bi-
nary classes. We refer to a a classification context P =
(D, f, g, O) as binary if ΨP = {0, 1}.

We say that a binary classification context P =
(D, f, g, O) is ε-trivial if either (a) for every class c ∈
{0, 1}, the “base rates” of c are ε-close with respect to any
pair of groups, or (b) the observable features enable per-
fectly distinguishing between the two classes. Formally, ei-
ther of the following conditions hold:

• (“almost equal base rates”): for any two groups X,Y in
GP , and any class c ∈ ΨP , the multiplicative distance
between Pr[f(σX) = c] and Pr[f(σY ) = c] is at most ε;

• (“perfect distinguishability”): the distributions {O(σ) |
f(σ) = 0} and {O(σ) | f(σ) = 1} have disjoint sup-
port.

Note that if base rates are ε-close, there is a trivial classifier
that satisfies 0-fair treatment and ε-rational fairness: namely,
ignore the input and simply output some canonical value.
Additionally, note that if the observable features fully deter-
mine the class of the individual, there also exists a classifier
trivially satisfying 0-fair treatment and 0-rational fairness:
simply output the correct class of the individual based on
the observable features (which fully determine it by assump-
tion). So ε-trivial binary classification contexts admit classi-
fiers satisfying ε-fair treatment and ε-rational fairness. Our
characterization result shows that the above contexts are the
only ones which admit them.

Theorem 1. (Characterizing binary contexts.) Consider a
binary classification context P = (D, f, g, O), and let ε ≤
3/2 be a constant. Then:

• If P is ε-trivial, there exists a classifier C satisfying 0-fair
treatment and 2ε-rational fairness with respect to P .

• If there exists a classifier C satisfying ε-fair treatment
and ε/5-rational fairness with respect to P , then P is 4ε-
trivial.

We note that a similar notion of triviality was con-
sidered in (Kleinberg, Mullainathan, and Raghavan 2017;
Chouldechova 2017) to obtain related characterizations for
binary classification tasks, albeit for different definitions of
fairness and “accuracy”.



The general case. To deal with the general (i.e., non-
binary) case, we need to consider a more general notion of a
trivial context. The definition of triviality is actually some-
what different from the definition given for the binary case,
but its not hard to see that for this special case the definitions
are equivalent.

We say that a classification context P = (D, f, g, O) is
ε-trivial if there exists a partition of the set ΨP into subsets
Ψ1,Ψ2, . . . ,Ψm of classes such that both of the following
conditions hold:
• (“base-rates conditioned on Ψi are close”): for any i ∈

[m], for any two groups X,Y in GP , and any class c ∈
Ψi, the multiplicative distance between Pr[f(σX) = c |
f(σX) ∈ Ψi] and Pr[f(σY ) = c | f(σY ) ∈ Ψi] is at
most ε;

• (“perfect distinguishability between Ψi and Ψj”): for any
i 6= j ∈ [m] the distributions {O(σ) | f(σ) ∈ Ψi} and
{O(σ) | f(σ) ∈ Ψj} have disjoint support.

Note that in contrast to the definition given for binary con-
text, the general definition requires that both of the above
conditions hold (as opposed to just one of them). Note, how-
ever, that in case we only have 2 classes, there are only 2
possible partitions of ΨP : either we have the trivial partition
Ψ1 = {0, 1} in which case condition 1 is equivalent to re-
quiring equal base rates, and condition 2 trivially holds; or
Ψ1 = {0},Ψ2 = {1}, in which case condition 1 trivially
holds, and condition 2 is equivalent to prefect distinguisha-
bility between class 0 and class 1.

Once again, if a classification context is ε-trivial, there
exists a simple classifier that satisfies ε-fair treatment and
O(ε)-rational fairness: given some observable features o, de-
termine which subgroup Ψi the individual belongs to (which
we know can be done by the second requirement), and fi-
nally output i. Roughly speaking, this classifier satisfies 0-
fair treatment since for any i and any class c ∈ Ψi, all indi-
viduals in Ψi receive the same outcome (namely, i). Rational
fairness is a bit more tricky to prove, but roughly speaking
follows from the fact that, conditioned on any classification
outcome i, the group g of the individual carries “O(ε) infor-
mation” about the actual class of the individual, and so, by
ignoring it, the DM loses little in utility. Our main theorem
shows that ε-triviality is also a necessary condition:
Theorem 2. (Full characterization.) Consider some classi-
fication context P = (D, f, g, O), let ε ≤ 3/2 be a constant
and let k = |ΨP | (i.e., the number of classes). Then:
• If P is ε-trivial, there exists a classifier C satisfying 0-fair

treatment and 2ε-rational fairness with respect to P .
• If there exists a classifier C satisfying ε-fair treatment and
ε/5-rational fairness with respect to P , then P is 4(k −
1)ε-trivial.

Related Work
Several recent works also show obstacles to achieving fair
classifications. Notably, the elegant result of (Kleinberg,
Mullainathan, and Raghavan 2017) shows that (in our ter-
minology), for non-trivial binary classification problems,
there are no classifiers that satisfy ε-fair treatment (in fact,

an expectation-based relaxation of the notion we consider)
as well as a notion of ε-group calibration—roughly speak-
ing, ε-group calibration requires that conditioned on any
outcome and group, the distributions of individuals’ ac-
tual classes are (approximately) “calibrated” according to
the outcome. 4 Calibration, however, is best thought of as
an “accuracy” notion for the classifier (rather than a fair-
ness notion), and may not always be easy to achieve even
without any concern for fairness. (Additionally, the results
from (Kleinberg, Mullainathan, and Raghavan 2017) show a
weaker bound than those we present here, namely that both
of the ε-approximate notions they consider in conjunction
imply O(

√
ε) difference in base rates or O(

√
ε) prediction

error; we present a stronger, asymptotically tight, bound im-
plying either O(ε) difference in base rates or exact perfect
prediction. However, we note that this is largely due to the
fact that the actual definitions employed are incomparable.)

(Chouldechova 2017) presents a similar impossibility re-
sult, focusing on binary classification with a binary output.
She points out a simple identity (a direct consequence of the
definition of conditional probabilities) which implies that,
in non-trivial binary classification contexts, and for binary
classifiers (i.e., classifiers only outputting a single bit), 0-fair
treatment is incompatible with a notion of perfect “predic-
tive parity”—namely, that conditioned on the classifier out-
putting b, the probability that the class is b is independent
of the group. While her result only applies in a quite limited
setting (binary context, binary classifiers, and only rules out
“perfect” fair treatment combined with “perfect” predictive
parity), we will rely on an identity similar to hers in one step
of our proof. We will also rely on a generalized version of
a notion of predictive parity (which deals with non-binary
classes, non-binary outcomes, and non-zero error in predic-
tivity) as an intermediate notion within the proof of our main
theorem.

As far as we know, no earlier results have considered the
effect of having a rational decision-maker act based on the
output of the classifier. However, as pointed out to us by an
anonymous reviewer, for the case that ε = 0, Blackwell’s
celebrated “comparison of experiments” theorem (Black-
well 1951)5 be used to show an equivalence between 0-
rational fairness and perfect predictive parity, and as such, a
Chouldechova’s result combined with Blackwell’s theorem
rules out non-trivial binary classifications admitting clas-
sifiers that satisfy 0-fair prediction and 0-rational fairness.
Dealing with the case that ε > 0, however, is what interests
us here: it should be no surprise that “perfect” fairness is
impossible, just like “perfect” differential privacy (Dwork
2006) is impossible for any non-trivial task (whereas ε-
differential privacy where ε > 0 is highly possible for many
functions of interest!) We highlight that as far as we are

4In the COMPAS example, calibration might require that, e.g.,
of people in each group assigned a risk score of 5, approximately
50% will recidivate, and so forth.

5Roughly speaking, this result shows that if a decision-maker
can never (i.e., no matter what the utility function is) make use of a
signal (in our case, the group of the individual) to improve his util-
ity, then the signal carries no further information than other signals
the decision-maker sees (in our case, the output of the classifier).



aware, “approximate” analogues of Blackwell’s theorem are
not known; in a sense, one of our results—Claim 2—can be
viewed as an “approximate” analog of Blackwell’s theorem
(with a very different type of proof).

Furthermore, to the best of our knowledge, none of the
earlier impossibility results consider non-binary classifica-
tion problems.

Proof Outline
We here provide an outline of the proof of the main theo-
rem. We start by considering just binary classification con-
texts P = (D, f, g, O), and then show how to extend the
proof to deal also with non-binary contexts. As mentioned
above, for binary contexts, the “if” direction of the theorem
(i.e., showing that trivial contexts admit fair classifiers) is
immediate. The “only if” direction requires showing that the
existence of a classifier C that satisfies ε-fair treatment as
well as ε/5-rational fairness for a context P implies that P
is O(ε)-trivial. The full proof is deferred to the appendix.

Predictive parity. Towards showing this, we introduce a
generalized version of the notion of “predictive parity” con-
sidered in (Chouldechova 2017) (which will later also be
useful in proving the “if” direction for non-binary classifi-
cation). Roughly speaking, we say that a classifier satisfies
ε-predictive parity if, for any two groups X and Y , the fol-
lowing distributions are ε-close in multiplicative distance:

• {f(σX) | C(O(σX)) = c}
• {f(σY ) | C(O(σY )) = c}
That is, the output of the classifier is “equally predictive” of
the actual class between groups.

Relating predictive parity and rational fairness. Our
first result (which works for all, and not just binary, con-
texts) shows that rational fairness and predictive parity are
intimately connected. First of all, ε-predictive parity implies
O(ε)-rational fairness—intuitively, if a DM could gain by
discriminating, then there must exist some output for the
classifier for which such a gain is possible, and this con-
tradicts predictive parity. This forward direction turns out to
be useful for proving that all ε-trivial contexts (even non-
binary ones) admit classifiers satisfying ε-rational fairness
and ε-fair treatment; that is, the “if” direction of the theorem
(also for non-binary contexts).

More interestingly, we show that ε/5 rational fairness (for
ε < 3/2), combined with ε′-fair treatment (for any ε′), im-
plies ε-predictive parity. Intuitively, we show this as follows.
Consider some C that does not satisfy ε-predictive parity,
yet satisfies ε/5-rational fairness and ε′-fair treatment. This
means there exists some class y∗, groups g, g′ and some out-
come o such that the prevalence of y∗ is significantly higher
in group g than in group g′ conditioned on the classifier out-
putting o.

We then construct a very natural game for the DM where
every fair strategy has low utility compared to the opti-
mal unfair strategy, which would contradict rational fair-
ness. The action space of the games consists of two actions

{Risky,Safe}. If the DM chooses Safe they always receive
some fixed utility u∗. On the other hand, if they choose
Risky, they receive 1 if the individual’s class is y∗ and 0
otherwise. That is, playing Risky is good if the individual is
“good” (i.e., in class y∗) and otherwise not.

We next show, relying on the fact that C satisfies fair treat-
ment and the fact that the prevalence of y∗ is significantly
higher conditioned on the DM getting the signal (o, g) than
when getting (o, g′), that, if we set u∗ (i.e, the utility of
playing Safe) appropriately, the DM can always significantly
gain by discriminating between g and g′. The intriguing as-
pect of this proof is that the optimal “fair” strategy for the
DM turns out to be a mixed strategy (i.e., a probabilistic
strategy) which mixes uniformly between the two actions
Risky and Safe.

Simultaneously achieving fair treatment and predictive
parity (binary contexts). Given that O(ε)-rational fair-
ness combined with (any finite-error) fair treatment implies
O(ε)-predictive parity, to prove the theorem, it will suffice to
show that only trivial contexts admit classifiers that simulta-
neously satisfy O(ε)-fair treatment and O(ε)-predictive par-
ity.

Towards showing this, let us first focus on binary classifi-
cation contexts. We first note that, by the definition of condi-
tional probability, for any X ∈ GP , i, j ∈ ΨP , and o ∈ ΩCP ,
the following identity holds:

Pr[f(σX) = j | C(O(σX)) = o]

Pr[f(σX) = i | C(O(σX)) = o]

Pr[C(O(σX)) = o | f(σX) = i]

Pr[C(O(σX)) = o | f(σX) = j]

=
Pr[f(σX) = j]

Pr[f(σX) = i]

This identity is basically a generalization of an identity ob-
served in (Chouldechova 2017) for the special case of binary
classification tasks and binary classifiers; it relates the con-
ditional probabilities defining fair treatment and predictive
parity (the first and second terms on the left, respectively) to
the base rates of classes between any two groups (the terms
on the right).

The same identity as above also holds substituting any
Y ∈ GP forX . By applying ε-fair treatment and ε-predictive
parity to these two respective identities, we get that their left-
hand sides are 4ε-close, and as a consequence we have that
the ratios

Pr[f(σX) = j]

Pr[f(σX) = i]
and

Pr[f(σY ) = j]

Pr[f(σY ) = i]

are 4ε-close. (Note that, to perform these manipulations, it is
important that we rely on the multiplicative distance notion.)
For the case of binary classification contexts, letting αgb =
Pr[f(σg) = b] denote the “base rate” of class b for group g,
this means that the ratios

αX1
αX0

=
αX1

1− αX1
and

αY1
αY0

=
αY1

1− αY1
are 4ε-close, and thus we have that the base rates αX1 , αY1
must be 4ε-close (and the same for αX0 , αY0 ).

But there is a catch. We can only apply the above identity
when it is well-defined—that is, when there are no divisions



by zero. In other words, we can only apply it if there exists
some outcome o such that

Pr[C(O(σ)) = o ∧ f(σ) = 0] > 0 and
Pr[C(O(σ)) = o ∧ f(σ) = 1] > 0.

If there is no such outcome, C perfectly distinguishes be-
tween the two classes, and thus

{O(σ) | f(σ) = 0} and {O(σ) | f(σ) = 1}
must have disjoint support. Hence, in either case, P is a 4ε-
trivial context.

Simultaneously achieving fair treatment and predictive
parity (general contexts). Dealing with non-binary con-
texts is quite a bit more involved, and we content ourselves
to simply provide a very high-level overview. Consider some
C that satisfies ε-fair treatment and ε-predictive parity with
respect to P = (D, f, g, O); our goal is again to show that
P must be O(ε)-trivial.

At a high level, we will show either that base rates are ε-
close or that we can split the set of classes ΨP into proper
subsets Ψ1,Ψ2 such that the classifier can perfectly distin-
guish between these sets of classes. Once we have shown
this property, we can next repeatedly rely on it to prove the
theorem (more precisely, by recursively splitting up either
Ψ1 or Ψ2 and applying the same result; formally doing this
turns out to be somewhat subtle.)

To prove the above property, our goal is to use the same
high-level approach as in the binary case. Assume that there
do not exist Ψ1 and Ψ2 such that C can perfectly distinguish
between them, and let us show that then the base rates must
be close. In order to apply the same argument as in the binary
case, we would need to show that for all pairs of classes
(i, j), the above identity can be applied. If we do this, then
we have that, for all (i, j), the ratios

Pr[f(σX) = j]

Pr[f(σX) = i]
and

Pr[f(σY ) = j]

Pr[f(σY ) = i]

are 4ε-close, from which we can conclude that the base rates
are 4ε-close. However, the fact that C cannot distinguish be-
tween two proper subsets of classes does not mean that all
classes are “ambiguous” with respect to C (in the sense that
C cannot perfectly tell them apart, and thus the identity is
well-defined). Instead, what we show is that, under the as-
sumption that there do not exist two proper subsets of classes
between which C can perfectly distinguish, we have that, be-
tween any two classes i and j, there exists a sequence of
classes (i1, . . . , in) such that n ≤ k (k being the number of
classes), i1 = i, in = j, and any two consecutive classes
must be “ambiguous”. Ambiguity between classes with re-
spect to C turns out to be exactly the condition under which
the above identity is well defined. At a very high level, we
can then perform a “hybrid argument” over the classes in the
sequence to still conclude that, for all pairs of classes (i, j),
the ratios

Pr[f(σX) = j]

Pr[f(σX) = i]
and

Pr[f(σY ) = j]

Pr[f(σY ) = i]

are 4(k − 1)ε-close; this suffices to conclude that the base
rates between groups are close.
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A Appendix
We present the full proof of our main theorem as an ap-
pendix.



B Preliminaries and Definitions
Notation
Conditional probabilities. Given some random variable
X and some event E, we let Pr[p(X) | E] denote the
probability of a predicate p(X) holding when condition-
ing the probability space on the event E. If the probabil-
ity of E is 0, we slightly abuse notation and simply define
Pr[p(X) | E] = 0.

Multiplicative distance. The following definition of mul-
tiplicative distance will be useful to us. We let the multi-
plicative distance µ(x, y) between two real numbers x, y ≥
0 be defined as

µ(x, y) =


ln
(

max
(
x
y ,

y
x

))
if x > 0, y > 0

0 if x = y = 0

∞ otherwise

Classification Contexts
We start by defining classification contexts and classifiers.

Definition 1. A classification context P is denoted by a
tuple (D, f, g, O) such that:

• D is a probability distribution with some finite support
ΣP (the set of all possible individuals to classify).

• f : ΣP → ΨP is a surjective function that maps each
individual to their class in a set ΨP .

• g : ΣP → GP is a surjective function that maps each
individual to their group in a set GP .

• O : ΣP → {0, 1}∗ is a function that maps each individual
to their observable features.6

We note that f and g are deterministic; this is without loss
of generality as we can encode any probabilistic features that
f and g may depend on into σ as “unobservable features” of
the individual.

Given such a classification context P , we let ΨP denote
the range of f , and GP denote the range of g. Whenever
the classification context P is clear from context, we drop
the subscript; additionally, whenever the distribution D and
group function g are clear from context, we use σ to de-
note a random variable that is distributed according to D,
and σX to denote the random variable distributed according
to D conditioned on g(σ) = X .

A classifier C for a classification context P =
(D, f, g, O) is simply a (possibly randomized) algorithm.
We let ΩCP denote the support of the distribution {C(σ)}.

Fair Treatment
Next we define the notion of fair treatment, an approximate
version of the notion of “equalized odds” from (Hardt, Price,
and Srebro 2016) (which in turn was derived from notions
implicit in the ProPublica study (Angwin et al. 2016b)).

6This is included for generality; for our result, it suffices to take
O to be the identity function, as we can show impossibility even
for classifiers which may observe every feature of an individual.

Definition 2. We say that a classifier C satisfies ε-
fair treatment with respect to a context P = (D, f, g, O)
if, for any groups X,Y ∈ GP , any class c ∈ ΨP , and any
outcome o ∈ ΩCP , we have that

µ(Pr[C(O(σX )) = o | f(σX ) = c], Pr[C(O(σY )) = o | f(σY ) = c]) ≤ ε

Note that for the case of binary classification tasks and
binary classifiers (i.e., when ΨP = ΩCP = {0, 1}), fair treat-
ment is equivalent to requiring “similar” false positive and
false negative rates.

Rational Fairness
We turn to introducing our notion of “fairness with respect to
rational decision-makers”. Towards this goal, given a classi-
fication context P and a classifier C, we consider a single-
player Bayesian game Γ where individuals σ are sampled
fromD, the decision-maker (DM) gets to see the group g(σ)
of the individual and the outcome o = C(σ) of the clas-
sifier, and then selects some action x ∈ ΩDM. They then
receive utility u(f(σ), x) that is only a function of the ac-
tual class f(σ) and their decision x. We let ΓP,C,ΩDM,u de-
note the Bayesian game induced by the above process (for
some action space ΩDM and utility function u). Given such a
game ΓP,C,ΩDM,u, a pure strategy for the DM is a function
s : GP × ΩCP → ΩDM, and a mixed strategy is a probabil-
ity distribution over pure strategies. In the sequel, we simply
use the term “strategy” to refer to mixed strategies.

Definition 3. We say that a strategy s is ε-optimal in
ΓP,C,ΩDM,u where P = (D, f, g, O), if for all (g, o) in the
support of {(g(σ)), C(O(σ))} and any strategy s′, we have:

eεE[u(f(σ), s(g, o)) | g(σ) = g, C(σ) = o]

≥ E[u(f(σ), s′(g, o)) | g(σ) = g, C(σ) = o]

That is, a player can never gain more than a factor eε in
utility by deviating.ΓP,C,ΩDM,u. 7 We turn to defining what it
means for a strategy to be fair.

Definition 4. We say that a strategy s for a game ΓP,C,ΩDM,u

is fair if there exists a function s̃ such that s(g, o) = s̃(o).

That is, the strategy s does not depend on the group of the
individual. As we shall see later on (see Claim 2), the “best”
fair strategy s (i.e., a fair strategy that satisfies ε-optimality
for the smallest ε) may need to be a mixed strategy—in fact,
we demonstrate a game where there is a significant gap be-
tween the best mixed and pure fair strategies. (In our opin-
ion, this is intriguing in its own right, as mixed strategies
are typically not helpful in a decision-theoretic—i.e., single-
player—setting.)

We finally define what it means for a classifier C to enable
fair decision making.

7Note that we here use the so-called ex-interim notion of ε-
optimality which requires s to be ε-close to the optimal strategy
even conditioned on the DM having received its type (i.e. (g, o) in
our case). This is the most commonly used notion of optimality. We
mention that there is also a weaker notion of ex-ante ε-optimality
which only requires s to be optimal a priori before seeing the type.
A weaker version of our main impossibility result holds also for
this notion.



Definition 5. We say that C enables ε-approximately fair
decision making (or simply satisfies ε-rational fairness)
with respect to the context P = (D, f, g, O) if, for ev-
ery finite action space ΩDM and every utility function u :
ΨP × ΩDM → [0, 1], there exists a strategy s that is fair and
ε-optimal with respect to ΓP,C,ΩDM,u.

C Characterizing Fair Classifiers
Our main theorem is a complete characterization of the class
of contexts that admit classifiers that simultaneously satisfy
fair treatment and rational fairness.

The following notion of “triviality” will characterize con-
texts admitting such classifiers.

Definition 6. A classification context P = (D, f, g, O) is
ε-trivial if there exists a partition of the set ΨP into subsets
Ψ1,Ψ2, . . . ,Ψm of classes such that the following condi-
tions hold:

1. For any i ∈ [m], c ∈ Ψi and any two groups X,Y in GP ,
we have that

µ(Pr[f(σX ) = c | f(σX ) ∈ Ψi], Pr[f(σY ) = c | f(σY ) ∈ Ψi]) ≤ ε

(i.e., the base rates conditioned on Ψi are close between
groups)

2. For any i, j ∈ [m] with i 6= j, the distributions {O(σ) |
f(σ) ∈ Ψi} and {O(σ) | f(σ) ∈ Ψj} have disjoint
support.

Note that if the class space Ψ is binary, triviality means
that either the base rates are ε-close, or we can perfectly dis-
tinguish between the two classes.

Our main characterization theorem shows that a context
P admits classifiers satisfying O(ε)-fair treatment and ε-
rational fairness if, and only if, P is O(ε)-trivial.

Theorem 3 (Theorem 2, restated). Consider some classifi-
cation context P = (D, f, g, O) and let k = |ΨP | (i.e., the
number of classes). Then:

1. For any constant ε, ifP is ε-trivial, then there exists a clas-
sifier C satisfying 0-fair treatment and 2ε-rational fairness
with respect to P .

2. For any constant ε < 3/2, if there exists a classifier C
satisfying ε-fair treatment and ε/5-rational fairness with
respect to P , then P is 4(k − 1)ε-trivial.

Note that Theorem 1 from the introduction (i.e., the clas-
sification for binary contexts) follows directly as a special
case when k = 2. Additionally, let us remark that Theo-
rem 3 holds even for a somewhat weaker definition of ratio-
nal fairness where we only require the existence of a fair
ε-equilibrium in games with binary decision spaces (i.e.,
ΩDM = {0, 1}), and even if we restrict to this simple and
natural subclass of games.

D Proof of Theorem 3
Towards proving Theorem 3, we first define a notion of ε-
predictive parity and show that a contextP admits classifiers
satisfying ε-rational fairness and ε-fair treatment if and only
if P admits a classifier satisfying O(ε)-predictive parity and

ε-fair treatment. (We note that predictive parity is not equiv-
alent to rational fairness, but is so for classifiers that also
satisfy fair treatment.)

Next, we show that O(ε)-triviality characterizes the set of
contexts admitting classifiers satisfying ε-predictive parity
and ε-rational fairness. (This second step is interesting in its
own right, and can be thought of a significant strengthening
of the impossibility result of (Chouldechova 2017), which
only showed triviality for the special case when ε = 0, the
classification context is binary, and the classifier is binary.8)

Predictive Parity
We first introduce an intermediate notion of approximate
“predictive parity” (we are borrowing the name from
(Chouldechova 2017), who considered a perfect version of
this notion tailored for binary classifiers, where the class is
a single bit and the classifier also outputs only a single bit.)
Roughly speaking, ε-predictive parity requires that the dis-
tributions of individuals’ classes, conditioned on a particu-
lar outcome, be ε-close between groups. We remark that this
notion is a strict relaxation of the notion of ε-group calibra-
tion considered by (Kleinberg, Mullainathan, and Raghavan
2017) (which not only requires that the distribution of the
classes be the same between groups conditioned on the out-
come o of the classifier, but also that the outcome o “accu-
rately predicts” the class).
Definition 7. We say that a classifier C satisfies ε-predictive
parity with respect to a context P = (D, f, g, O) if, for any
groups X,Y ∈ GP , any outcome o ∈ ΩCP , and any class
c ∈ ΨP , we have that
µ(Pr[f(σX ) = c | C(O(σX )) = o], Pr[f(σY ) = c | C(O(σY )) = o]) ≤ ε

We next show that predictive parity is closely related to ra-
tional fairness (at least, when combined with fair treatment).
We first show that ε-predictive parity implies O(ε)-rational
fairness.
Claim 1. Let C be a classifier that satisfies ε-predictive par-
ity with respect to a context P = (D, f, g, O). Then C satis-
fies 2ε-rational fairness with respect to P .

Proof. Consider some classifier C satisfying ε-predictive
parity with respect to a context P . We will show that C also
satisfies 2ε-rational fairness with respect to P .

Let T Γ
DM denote the support of {(g(σ)), C(O(σ))} (i.e.,

the support of the type space in the Bayesian game). Let
s∗ be an optimal strategy; we may without loss of general-
ity assume that s∗ is a pure strategy, since for every type
(g, o) ∈ T Γ

DM there exists a deterministic best response.
We now show how to modify s∗ into a fair strategy s with-
out ever losing too much in expected utility. For every out-
come o, pick some g∗o such that (g∗o , o) ∈ T Γ

DM , and define
s(g, o) = s∗(g∗o , o). Clearly s is fair. We now show that for
every pair (g, o) ∈ T Γ

DM , the expected utility of playing s∗
can never be more than a factor e2ε better than the expected
utility of playing s, and thus s is 2ε-optimal (as desired).

8For this special case, her notion of triviality is a special case of
our notion of 0-triviality, which requires that either the base rates
are identical for both groups, or one can perfectly predict the class
of an individual.



Assume for contradiction that there exists some (g, o)
such that g 6= g∗o and

E[u(f(σ), s∗(g, o)) | g(σ) = g, C(O(σ)) = o]

> e2εE[u(f(σ), s(g, o) | g(σ) = g, C(O(σ)) = o]

That is,∑
y∈ΨP

Pr[f(σg) = y | C(O(σg)) = o]u(y, s∗(g, o))

> e2ε
∑
y∈ΨP

Pr[f(σg) = y | C(O(σg)) = o]u(y, s(g, o))

By applying predictive parity (more precisely, that the mul-
tiplicative distance between Pr[f(σg) = y | C(O(σg)) = o]
and Pr[f(σg∗o ) = y | C(O(σg∗o )) = o] is at most ε) to both
the LHS and the RHS (we lose a factor eε for each applica-
tion), we get that∑

y∈ΨP

Pr[f(σg∗o ) = y | C(O(σg∗o )) = o]u(y, s∗(g, o))

>
∑
y∈ΨP

Pr[f(σg∗o ) = y | C(O(σg∗o )) = o]u(y, s(g, o))

In other words, (and relying on the fact that s(g, o) =
s∗(g∗o , o)),

E[u(f(σ), s∗(g, o)) | g(σ) = g∗o , C(O(σ)) = o]

> E[u(f(σ), s∗(g∗o , o) | g(σ) = g∗o , C(O(σ)) = o]

which is a contradiction since, by assumption, s∗(g∗o , o) is
an optimal move given the type (g∗o , o).

As we next show, any classifier that satisfies ε-rational
fairness and ε′-fair treatment (for any ε′) also satisfies O(ε)-
predictive parity. Intuitively, we show this as follows. Con-
sider some C that does not satisfy O(ε)-predictive parity, yet
satisfies ε-rational fairness and ε′-fair treatment. This means
there exists some class y∗, groups g, g′ and some outcome o
such that the prevalence of y∗ is significantly higher in group
g than in group g′ conditioned on the classifier outputting o.

We then construct a very natural game for the DM where
every fair strategy has low utility compared to the optimal
unfair strategy. The action space consists of two actions
{Risky,Safe}. If the DM chooses Safe they always receive
some fixed utility u∗. On the other hand, if they choose
Risky, they receive 1 if the individual’s class is y∗ and 0
otherwise. That is, playing Risky is good if the individual is
“good” (i.e., in class y∗) and otherwise not.

Assume there exists some fair strategy s that is ε-optimal
in this game. We first observe that by ε′-fair treatment of C,
it must be the case that both (g, o) and (g, o′) are in the sup-
port of {(g(σ)), C(O(σ))} (i.e., the support of the “type dis-
tribution” of the game), and thus optimality of s must hold
conditioned on both of them.

We next use the fact that the prevalence of y∗ is signifi-
cantly higher conditioned on the DM getting the signal (o, g)
than when getting (o, g′), and thus if we set u∗ (i.e, the util-
ity of playing Safe) appropriately, we can ensure that the
DM gains by discriminating between g and g′ (playing Risky

when the group is g, and Safe otherwise). Interestingly, de-
termining by how much a DM can gain by discriminating
turns out to be somewhat subtle; it turns out that the “best”
fair strategy (i.e., the fair strategy that minimizes the ex-
pected utility loss with respect to the optimal strategy) mixes
with probability 1/2 between Risky and Safe.

Claim 2. Let C be a classifier that satisfies log
(

2
1+e−ε/2

)
-

rational fairness with respect to a context P = (D, f, g, O),
as well as ε′-fair treatment with respect to P (for any ε′).
Then C satisfies ε-predictive parity with respect to P .

Proof. Assume for contradiction that C satisfies
log
(

2
1+e−ε/2

)
-rational fairness and ε′-fair treatment

(with respect to P), yet does not satisfy ε-predictive parity
(with respect to P).

Let T Γ
DM denote the support of {(g(σ)), C(O(σ))} . We

first claim that T Γ
DM = ΩCP × GP . If not, since ΩCP is the

support of C(O(σ)) (and thus for every o ∈ ΩCP there is at
least one g ∈ GP for which (o, g) ∈ T Γ

DM ), there must ex-
ist an outcome o ∈ ΩCP and groups g, g′ ∈ GP such that
(o, g) ∈ T Γ

DM but (o, g′) 6∈ T Γ
DM . This, however, would

mean that there is y ∈ ΨP for which the distributions
{C(O(σg)) | f(σg) = y} and {C(O(σg′)) | f(σg′) = y}
have different supports (and hence infinite max-divergence),
as, by definition of T Γ

DM , omust be in the support of the for-
mer for some y but cannot be in the support of the latter for
any y. This contradicts ε′-fair treatment (for any ε′) of C.

Next, since C fails to satisfy ε-predictive parity, there exist
groups g, g′ ∈ GP , class y∗ ∈ ΨP , and an outcome o ∈ ΩCP
such that

Pr[f(σg) = y∗ | C(O(σg)) = o]

Pr[f(σg′) = y∗ | C(O(σg′)) = o]
> eε

Let δ > ε be such that

eδ =
Pr[f(σg) = y∗ | C(O(σg)) = o]

Pr[f(σg′) = y∗ | C(O(σg′)) = o]

and define the “midpoint” p between these probabilities as

p = eδ/2Pr[f(σg′) = y∗ | C(O(σg′)) = o]

= e−δ/2Pr[f(σg) = y∗ | C(O(σg)) = o]

Consider a game where ΩDM = {Risky,Safe},
u(y,Risky) = 1 if y = y∗ and 0 otherwise and
u(·,Safe) = p. The decision-maker’s expected utility
for choosing Safe is always p; on the other hand:

• Conditioned on (o, g), the decision-maker’s expected util-
ity for choosing Risky is

Pr[f(σg) = y∗ | C(O(σg)) = o] = eδ/2p

• Conditioned on (o, g′), their expected utility for Risky is

Pr[f(σg′) = y∗ | C(O(σg′)) = o] = e−δ/2p

Consider some fair pure strategy s for DM. It must choose
either Risky or Safe for both (o, g) and (o, g′). So,



• If s chooses Risky, DM receives e−δ/2p in expected utility
conditioned on (o, g′), whereas they could have received p
by instead choosing Safe (thus, they incur a multiplicative
loss of eδ/2).

• On the other hand, if s chooses Safe, then the decision-
maker receives utility p conditioned on (o, g), whereas
they could have received eδ/2p utility in expectation by
instead choosing Risky (again incurring a multiplicative
loss of eδ/2).

Thus, we conclude that any fair pure strategy must lose at
least a eδ/2 multiplicative factor in utility compared to the
optimal (unfair) strategy (which chooses Risky for (o, g) and
Safe for (o, g′)).

Consider next a fair mixed strategy s that chooses Risky
with probability pr (and Safe with probability 1 − pr) for
both (o, g) and (o, g′).

• Conditioned on (o, g′), the decision-maker gets
pre
−δ/2p + (1 − pr)p in expected utility, whereas

they could have received p by instead choosing Safe. This
results in a multiplicative loss of pre−δ/2 + (1− pr).

• Conditioned on (o, g), the decision-maker gets preδ/2p+
(1 − pr)p in expected utility, whereas they could have
received eδ/2p utility in expectation by instead choosing
Risky, yielding a multiplicative loss of pr+(1−pr)e−δ/2.

Thus, when determining the rational strategy that minimizes
the loss, we may without loss of generality assume that pr ≥
1/2 (as the case when pr ≤ 1/2 is symmetric simply by
renaming pr and 1 − pr), and focus on finding the pr that
minimizes

pre
−δ/2 + (1− pr) = 1− pr(1− e−δ/2)

which happens when pr is as small as possible, and thus
when pr = 1/2. So the optimal mixed rational strategy must
be pr = 1/2, and thus has a multiplicative loss of

1/2(e−δ/2 + 1) < 1/2(e−ε/2 + 1)

for both (o, g) and (o, g′) compared to the optimal unfair
strategy. (In particular, using the expected utilities above,
setting pr > 1/2 worsens the multiplicative loss conditioned
on (o, g′) by decreasing pre

−δ/2 + (1 − pr), and setting
pr < 1/2 worsens the multiplicative loss conditioned on
(o, g) by decreasing pr + (1− pr)e−δ/2.)

Hence, the decision-maker gains at least 2
1+e−ε/2

utility
multiplicatively by switching from any fair mixed strategy
to the optimal unfair strategy, and so we conclude the proof
with the contradiction that C cannot satisfy log

(
2

1+e−ε/2

)
-

rational fairness with respect to P .

We note that, for ε < 3/2 (in particular, ε less than
roughly 1.644), we have that log

(
2

1+e−ε/2

)
> ε/5, which

demonstrates the bounds we show in our other results:

Corollary 1. Let ε ∈ (0, 3/2), and let C be a classifier that
satisfies ε/5-rational fairness with respect to a context P =
(D, f, g, O), as well as ε′-fair treatment with respect to P
(for any ε′). Then C satisfies ε-predictive parity with respect
to P .

An interesting observation (which is not relevant for the
sequel of the proof, but nonetheless insightful) which fol-
lows from the above proof is that the optimal fair strategy
for the DM in the above game is a mixed strategy which
uniformly mixes between Safe or Risky (each with proba-
bility 1/2), whereas any fair pure strategy loses a factor of
eε/2 (i.e., significantly more) in utility. (We note, however,
that the existence of such a gap between the fair mixed and
fair pure strategies can only arise in games where the opti-
mal strategy is unfair: the existence of an optimal fair mixed
strategy implies the existence of an optimal fair pure strat-
egy.)

Proof of Theorem 3 (1)
By relying on the fact that predictive parity implies rational
fairness, we can now prove the first part of Theorem 3.
Proposition 1 (Theorem 3 (1).). If P = (D, f, g, O) is an
ε-trivial context, then there exists a classifier C that satisfies
0-fair treatment and 2ε-rational fairness with respect to P .

Proof. Consider a classifier C that on input y (in the support
of O(σ)) recovers some σ such that O(σ) = y, and then
outputs f(σ).

Proving that C satisfies fair treatment: Consider some
i ∈ [m] and some class c ∈ Ψi. We aim to show that for any
two groups X,Y ∈ GP and any outcome o, we have that

Pr[C(O(σX)) = o | f(σX) = c]

= Pr[C(O(σY )) = o | f(σY ) = c]
First note that, by the first condition in the definition of an
ε-trivial context (i.e., the “equal base rate condition”), it fol-
lows that c is in the support of {f(σX)} if and only if it is in
the support of {f(σY )}. Next, consider some c in the sup-
port of {f(σX)} (and thus also in the support of {f(σY )}).
Let i be such that c ∈ Ψi. Due to the second condition in the
definition of an ε-trivial context (i.e., that the distributions
{O(σ) | f(σ) ∈ Ψj} for j ∈ [m] have disjoint support), it
follows that for every σ such that f(σ) = c, C(O(σ)) always
outputs i. Thus,

Pr[C(O(σX)) = i | f(σX) = c]

= Pr[C(O(σY )) = i | f(σY ) = c] = 1
which concludes the proof that C satisfies 0-fair treatment.

Proving that C satisfies rational fairness: To show that
C satisfies 2ε-rational fairness, we note that, by Claim 1, it
suffices to show that C satisfies ε-predictive parity. By the
first condition of an ε-trivial context, we have that for every
i ∈ [m], c ∈ Ψi, and X,Y in GP ,

µ(Pr[f(σX ) = c | f(σY ) ∈ Ψi], Pr[f(σY ) = c | f(σY ) ∈ Ψi]) ≤ ε

By the disjoint support assumption, we have that C(O(σ)) =
i if and only if f(σ) ∈ Ψi, thus we have

µ(Pr[f(σX ) = c | C(O(σX )) = i], Pr[f(σY ) = c | C(O(σY )) = i]) ≤ ε

so C satisfies ε-predictive parity.



Subgroup Perfect Prediction
To prove the second part of Theorem 3, we introduce some
additional notions.
Definition 8. We say that a classifier C satisfies subgroup
perfect prediction with respect to context P if there exists
a proper subset ψ ⊂ ΨP such that the distributions

{C(O(σ)) | f(σ) ∈ ψ} and {C(O(σ)) | f(σ) 6∈ ψ}
have disjoint support.

To characterize classifiers satisfying subgroup perfect
prediction, a notion of “ambiguity between classes” will be
useful.
Definition 9. Given a classifier C and context P , we say that
classes i, j ∈ ΨP are ambiguous (with respect to C and P)
if there exists o ∈ ΩCP such that Pr[f(σ) = i ∧ C(O(σ)) =
o] > 0 and Pr[f(σ) = j ∧ C(O(σ)) = o] > 0. We further
say that classes i, j ∈ ΨP are n-ambiguous if there exists a
sequence (i0 = i, i1, i2, . . . , in = j) ∈ (ΨP)n+1 such that
any two consecutive elements ik and ik+1 are ambiguous.

We now have the following useful claim which says that,
if a classifier does not satisfy subgroup perfect prediction,
then all classes can be connected by a “short” ambiguous
sequence.
Claim 3. Consider some classifier C that does not satisfy
subgroup perfect prediction with respect to some context
P = (D, f, g, O). Then for every pair of classes i, j ∈ ΨP ,
we have that i, j are mi,j-ambiguous for some mi,j ≤
|ΨP | − 1.

Proof. Given a contextP and a classifier C, consider a graph
G with n = ΨP vertices, where we draw an edge between
two vertices i, j if i and j are ambiguous. Note that i, j are
m-ambiguous if and only if there exists a path of length m
connecting them.

We show that the graph must be fully connected if C
does not satisfy subgroup perfect prediction; the proof of the
claim immediately follows, as the shortest path between any
two nodes in a fully connected graph with n nodes can never
be more than n− 1.

Assume for the sake of contradiction that G is
not fully connected, yet C does not satisfy subgroup
perfect prediction. Then G must have a component ψ dis-
connected from the remainder of the graph (which can be
concretely found by, say, considering the set of all vertices
reachable from some class i ∈ ΨP ). Then we notice that
the set of outcomes that can be assigned to individuals with
classes in ψ must be entirely disjoint from the set of out-
comes that can be assigned to individuals with classes out-
side ψ; otherwise, there would by definition exist an edge
between a vertex in ψ and a vertex in ΨP \ ψ in the graph,
contradicting our assumption that ψ is disconnected from
ΨP \ψ. This contradicts our assumption that C does not sat-
isfy subgroup perfect prediction.

The next lemma can be viewed as a weak form of the
second part of Theorem 3. (In fact, for the case of binary
classification contexts, this lemma on its own directly im-
plies Theorem 1 from the introduction.) Looking forward,

we will soon strengthen this lemma by repeatedly applying
it to prove the full Theorem 3. In the sequel, we say that a
context P has ε-approximately equal base rates if for ev-
ery X,Y ∈ GP and every i ∈ ΨP ,

µ(Pr[f(σX) = i],Pr[f(σY ) = i]) ≤ ε

Lemma 1. Let P be a context, let C be a classifier that sat-
isfies ε-fair treatment and ε-predictive parity with respect to
a context P , and let k = |ΨP |. Then either:

1. P satisfies 4(k − 1)ε-approximately equal base rates, or
2. C satisfies subgroup perfect prediction over P .

Proof. Let C be a classifier that satisfies ε-fair treatment and
ε-predictive parity with respect to P , and let k = |ΨP |. We
will show that either P satisfies 4(k − 1)ε-approximately
equal base rates, or C satisfies subgroup perfect prediction
over P . Towards proving the lemma, let us introduce some
additional notation, and prove some helpful propositions:

• Let αiX = Pr[f(σX) = i] denote the base rate of the class
i w.r.t. the group X .

• Let fi denote the event that f(σ) = i and let Co denote
the event that C(O(σ)) = o.

• For any X ∈ GP , let fXi denote the event f(σX) = i and
let CXo denote the event that C(O(σX)) = o.

The following proposition is a generalization of the identity
observed in (Chouldechova 2017).

Proposition 2. Let i, j ∈ ΨP , o ∈ ΩCP , and i 6= j. Then, if
Pr[fXi ∧ CXo ] > 0 and Pr[fXj ∧ CXo ] > 0, we have:

Pr[CXo | fXi ]

Pr[CXo | fXj ]
=

Pr[fXj ]

Pr[fXi ]

Pr[fXi | CXo ]

Pr[fXj | CXo ]

for any X ∈ GP .

Proof. First observe that, if Pr[fXj ∧CXo ] > 0, then it follows
by conditional probability that Pr[fXj | CXo ] > 0, Pr[CXo |
fXj ] > 0, and also Pr[CXo ] > 0. Then the conclusion follows
immediately:

Pr[CXo | fXi ]

Pr[CXo | fXj ]
=

Pr[CXo ∧ fXi ]/Pr[fXi ]

Pr[CXo ∧ fXj ]/Pr[fXj ]

=
Pr[fXj ]

Pr[fXi ]

Pr[fXi | CXo ]Pr[CXo ]

Pr[fXj | CXo ]Pr[CXo ]
=

Pr[fXj ]

Pr[fXi ]

Pr[fXi | CXo ]

Pr[fXj | CXo ]

We now use the above proposition to get a relationship
between the base rate of any two classes that are ambiguous.

Proposition 3. For any two groups X,Y ∈ GP , and any
two classes i, j ∈ ΨP that are ambiguous w.r.t. C, we have:

µ

(
αXi
αYi

,
αXj
αYj

)
≤ 4ε



Proof. Consider any two X,Y ∈ GP , and any two classes
i, j ∈ ΨP that are ambiguous w.r.t. C. By ambiguity, there
exists some o ∈ ΩCP such that

Pr[fi ∧ Co] > 0 and Pr[fj ∧ Co] > 0.

There thus must exist groups g1, g2 such that

Pr[fg1i ∧ C
g1
o ] > 0 and Pr[fg2j ∧ C

g2
o ] > 0.

By fair treatment between the pairs (g1, X), (g2, X),
(g1, Y ), and (g2, Y ), it follows that

Pr[fXi ∧ CXo ] > 0, Pr[fXj ∧ CXo ] > 0,

Pr[fYi ∧ CYo ] > 0, Pr[fYj ∧ CYo ] > 0.

We can thus apply Proposition 2 to conclude:

µ(Pr[CXo | f
X
i ]α

X
i Pr[fXj | C

X
o ], Pr[CXo | f

X
j ]α

X
j Pr[fXi | C

X
o ]) = 0

By fair treatment, µ(Pr[CXo | fXi ],Pr[CYo | fYi ]) ≤ ε and
µ(Pr[CXo | fXj ],Pr[CYo | fYj ]) ≤ ε, thus9

µ(Pr[CYo | f
Y
i ]α

X
i Pr[fXj | C

X
o ], Pr[CYo | f

Y
j ]α

X
j Pr[fXi | C

X
o ]) ≤ 2ε

By predictive parity, µ(Pr[fXi | CXo ],Pr[fYi | CYo ]) ≤ ε and
µ(Pr[fXj | CXo ],Pr[fYj | CYo ]) ≤ ε, thus

µ(Pr[CYo | f
Y
i ]α

X
i Pr[fYj | C

Y
o ], Pr[CYo | f

Y
j ]α

X
j Pr[fYi | C

Y
o ]) ≤ 4ε

But, by Proposition 2 applied to Y (since Pr[fYi ∧ CYo ] > 0
and Pr[fYj ∧ CYo ] > 0), it also follows that:

µ(Pr[CYo | f
Y
i ]α

Y
i Pr[fYj | C

Y
o ], Pr[CYo | f

Y
j ]α

Y
j Pr[fYi | C

Y
o ]) = 0

So, dividing the last two expressions10 (which is possible
since Pr[fXi ∧ CXo ] > 0 and Pr[fXj ∧ CXo ] > 0) we conclude

µ

(
αXi
αYi

,
αXj
αYj

)
≤ 4ε

Armed with the above proposition, we turn to proving the
lemma. Assume for contradiction that P does not satisfy
4(k−1)ε-approximately equal base rates, and that C does not
satisfy subgroup perfect prediction over P . Let n = k − 1;
by Claim 3, we have that, for every pair of classes i, j ∈ ΨP ,
i and j are mi,j-ambiguous for some mi,j ≤ n. By our as-
sumption that P does not satisfy 4nε-equal base rates, there
exists some i ∈ ΨP and some X,Y ∈ GP such that

µ(αXi , α
Y
i ) > e4nε.

Thus at least one of αXi and αYi needs to be non-zero, and
then by the definition of fair treatment, we have that also the
second one must be non-zero. Thus, either

αXi
αYi

> e4nε or
αXi
αYi

< e−4nε.

9using the fact that µ(ab, c) = x and µ(b, d) = y implies
µ(ad, c) ≤ x+ y

10using the fact that µ(a/b, c/d) ≤ µ(a, c) + µ(b, d)

We may assume without loss of generality that the former
condition holds (as we may otherwise switch X and Y ).

By our ambiguity assumptions, for any j ∈ ΨP , there
is some m = mi,j ≤ n and an ambiguous chain (i0 =
i, i1, i2, . . . , im = j) ∈ (ΨP)m+1 so that any two con-
secutive elements is and is+1 are ambiguous; in particular
this means that Proposition 3 applies to any consecutive el-
ements in the sequence, and thus for every s ∈ [m− 1]

µ

(
αXis
αYis

,
αXis+1

αYis+1

)
≤ 4ε

Hence, iteratively employing Proposition 3, we have

αXi1
αYi1

> e4(n−1)ε,
αXi2
αYi2

> e4(n−2)ε, . . . ,

αXim
αYim

=
αXj
αYj

> e4(n−m)ε ≥ 1

Thus, for every j ∈ ΨP , we have that

αXj > αYj

which is a contradiction since∑
i∈ΨP

αXi =
∑
i∈ΨP

αYi = 1.

Proof of Theorem 3 (2)
In this section, we finally prove the second step of Theorem
3.
Proposition 4 (Theorem 3 (2).). Let ε < 3/2, let P be a
classification context, and let C be a classifier satisfying ε-
fair treatment and ε/5-rational fairness with respect to P .
Then P is 4(k − 1)ε-trivial, where k = |ΨP |.

Proof. Consider some classification context P; let ε < 3/2
be a constant and let k = |ΨP |. Assume the existence of a
classifier C satisfying ε-fair treatment and ε/5-rational fair-
ness with respect to P . We aim to show that P is 4(k − 1)ε-
trivial.

First, note that by Corollary 1, we have that C also satisfies
ε-predictive parity. To show that P is 4(k − 1)ε-trivial, we
shall repeatedly apply the following proposition.

Proposition 5. Let P = (D, f, g, O) be a context (where
|ΨP | = k) for which there exists a classifier C satisfying
ε-fair treatment and ε-predictive parity with respect to P .

Let Ψ1, . . . ,Ψm be a partitioning of ΨP into subsets such
that, for any i, j ∈ [m] with i 6= j, the distributions

{O(σ) | f(σ) ∈ Ψi} and {O(σ) | f(σ) ∈ Ψj}
have disjoint support. Then, either of the following condi-
tions must hold.
• For any two groups X,Y in GP , and any i ∈ [m],

µ(Pr[f(σX ) = c | f(σX ) ∈ Ψi], Pr[f(σY ) = c | f(σY ) ∈ Ψi]) ≤ 4(k−1)ε

(i.e., X and Y have approximately equal base rates con-
ditioned on each subset of classes Ψi).



• There exists some i and some partition of Ψi into proper
subsets Ψ0

i , Ψ1
i such that the distributions {O(σ) |

f(σ) ∈ Ψ0
i } and {O(σ) | f(σ) ∈ Ψ1

i } have disjoint
support.

Proof. ConsiderP, C,Ψ1, . . . ,Ψm satisfying the premise of
the proposition. LetDi be the distribution over σ obtained by
conditioning D on the event that f(σ) ∈ Ψi. We claim that
C also satisfies ε-fair treatment and ε-predictive parity with
respect to each contextPi = (Di, f, g, O), as the conditional
distributions over which they are defined are unchanged if
we restrict to f(σ) ∈ Ψi. For fair treatment, this is obvious
as for any c ∈ Ψi, conditioning on f(σ) = c is equivalent
to conditioning on f(σ) = c ∧ f(σ) ∈ Ψi (as these events
are the same).

For predictive parity, notice that because the distribu-
tions {O(σ) | f(σ) ∈ Ψi} are mutually disjoint, there
is also a partition Ω1, . . . ,Ωm of the outcome space ΩCP
such that C(O(σ)) ∈ Ωi if and only if f(σ) ∈ Ψi. Thus
conditioning on f(σ) ∈ Ψi is equivalent to condition-
ing on C(O(σ)) ∈ Ωi. We conclude that conditioning on
C(O(σ)) = o ∧ f(σ) ∈ Ψi (whenever this event happens
with positive probability) is equivalent to conditioning on
C(O(σ)) = o ∧ C(O(σ)) ∈ Ωi which in turn is equivalent
to conditioning on just C(O(σ)) = o.

Hence, for C and each context Pi, we can apply Lemma
1, showing that either Pi has 4(k−1)ε-approximately equal
base rates, or C satisfies subgroup perfect prediction with re-
spect to Pi. In case all Pi satisfy 4(k − 1)ε-approximately
equal base rates, we are done (we are satisfying condition
1 in the proposition). Otherwise, there must exist some i
such that C satisfies subgroup perfect prediction with re-
spect to Pi; that is, there some proper subset ψ of Ψi

such that the distributions {C(O(σ)) | f(σ) ∈ ψ} and
{C(O(σ)) | f(σ) 6∈ ψ} have disjoint support (when σ is
defined over Di), which in turn means that the distributions
{O(σ)f(σ) ∈ ψ} and {O(σ) | f(σ) 6∈ ψ} also have dis-
joint support. Hence we may partition Ψi into Ψ0

i = Ψi \ ψ
and Ψ1

i = ψ to satisfy the second condition of the propo-
sition (relying on the fact that {O(σ) | f(σ) ∈ Ψi} has
disjoint support from the support of {O(σ) | f(σ) ∈ Ψj}
for every j 6= i, and thus so will {O(σ) | f(σ) ∈ Ψb

i} for
b ∈ {0, 1}).

Now, noticing that we may partition ΨP into at most
|ΨP | = k distinct subsets, we can apply Proposition 5 re-
peatedly at most k − 1 times (starting with Ψ1 = ΨP , ev-
ery time increasing the number of partitions by one (by re-
placing Ψi with Ψ0

i and Ψ1
i ). Thus, when we can no longer

further partition some subset Ψi, the first condition from
the proposition must hold, and thus we have “4(k − 1)ε-
approximately equal base rates conditioned on Ψi” for every
i. We conclude that P is 4(k − 1)ε-trivial, which completes
the proof of Theorem 3 (2).

Concluding the Proof of Theorem 3
Theorem 3 follows as a direct consequence of Proposition
1 and Proposition 4. This concludes the proof of the main

theorem.


